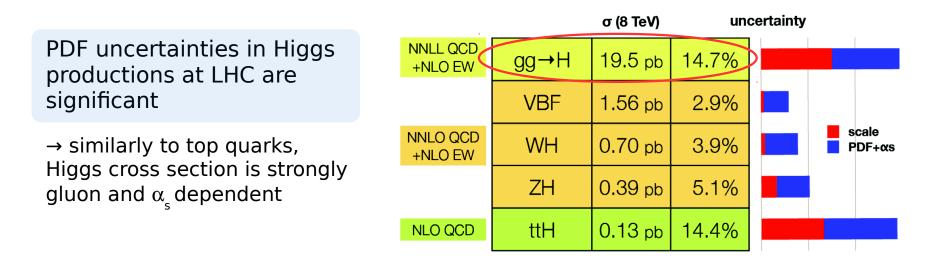
Impact of LHC on the Parton Distribution Functions

Ringailė Plačakytė

Precision theory for precise measurements at LHC and future colliders 25 Sept - 1 Oct 2016, Quy-Nhon, Vietnam

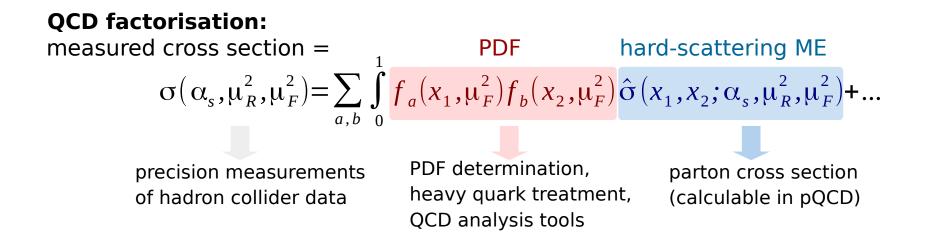

R. Plačakytė

Parton Distribution Functions

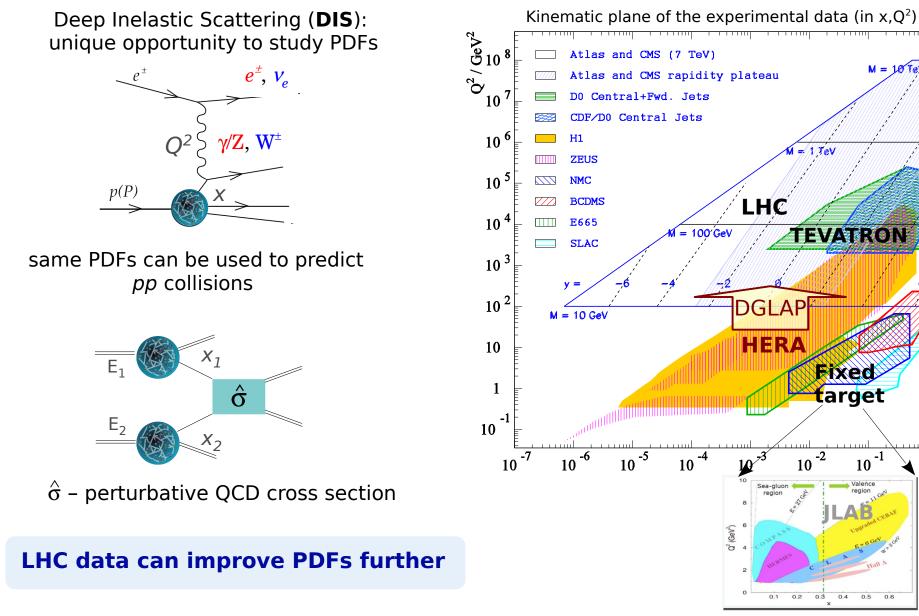
Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

→ **reach of new physics** searches depends on PDF knowledge at high Bjorken-x

→ PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass)

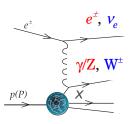

 \rightarrow agreement with Standard Model depends on how well we know PDFs and α_{r}

Parton Distribution Functions

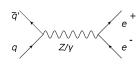

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

→ **reach of new physics** searches depends on PDF knowledge at high Bjorken-x

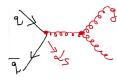
→ PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass)


Experimental data: from HERA to LHC

R. Plačakytė


Data in PDF fits

Deep Inelastic Scattering:

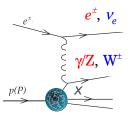

ep data: quarks and gluon at small x (F_1), flavour separation (CC) jets \rightarrow gluons (moderate x) and α_{s} heavy quarks \rightarrow gluons, tests of heavy quark schemes, mass determination fixed target data: higher x neutrino DIS: flavour decomposition, x > 0.01

Drell-Yan production:

 $\overline{q} \rightarrow \overline{q} \rightarrow$ V+ heavy flavour \rightarrow sensitivity to s quark

Inclusive jets, multi-jets and ratios:

high x gluon, α_s Isolated photon → gluon at medium and high x


ttbar, single top:

gluon at high *x*, u and d quarks, α_s

R. Plačakytė

Data in PDF fits

Deep Inelastic Scattering:

ep data: quarks and gluon at small x (F_1), flavour separation (CC) jets \rightarrow gluons (moderate x) and α_{c} heavy quarks \rightarrow gluons, tests of heavy quark schemes, mass determination fixed target data: higher x neutrino DIS: flavour decomposition, x > 0.01

Drell-Yan production:

different PDF combinations (low/mid/high x), deuterium target – $\overline{u}/\overline{d}$ asymmetry W/Z ratio, asymmetries \rightarrow flavour separation

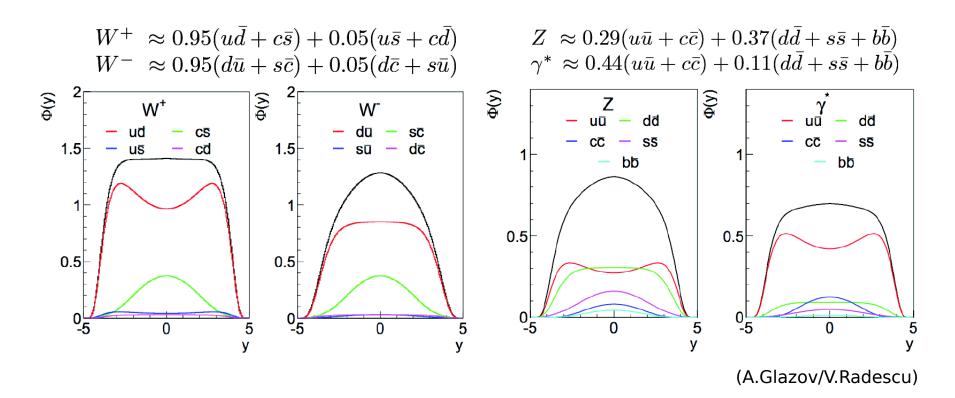
V+ heavy flavour \rightarrow mistic ity to s quark

Inclusive jets, multi-jets

high x gloon, α_s Isolated pointon \rightarrow soon at medium and high x

ttbar, single top:

gluon at high x, u and d quarks, α_s


\rightarrow only selected examples will be shown

R. Plačakytė

W and Z production at LHC

Z and W production at LHC

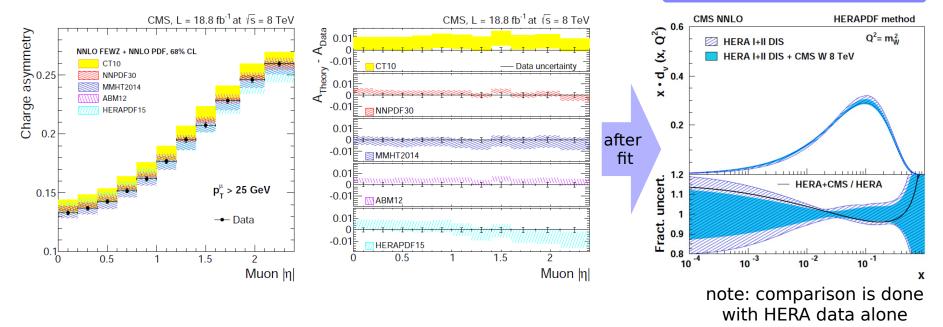
- → probe different flavour combinations
- \rightarrow potential to improve quark PDFs

 \rightarrow u and d quarks dominate for W, all flavours contribute to Z

R. Plačakytė

W charge asymmetry

W lepton charge asymmetry at LHC

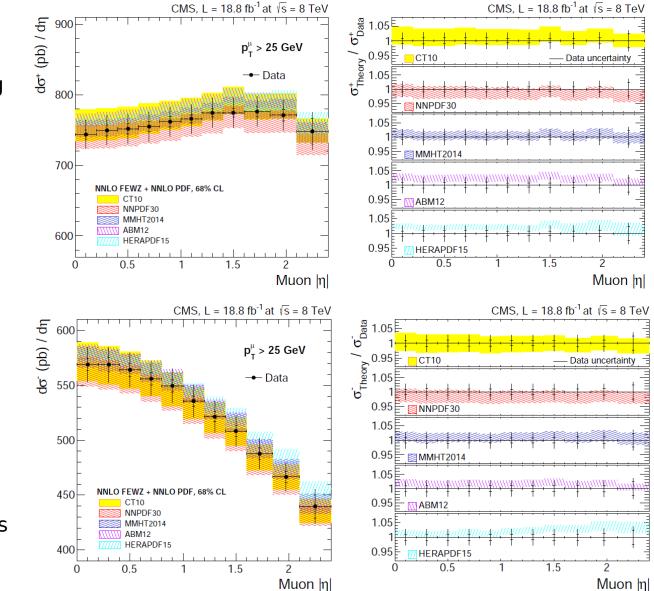

 \rightarrow overall excess of W⁺ over W⁻ due to presents of two valence *u* quarks in the proton

→ probe valence quarks and PDFs rations (u_v , d_v , d/u, d_v/u_v , dbar/ubar):

$$A_{W} = \frac{W^{+} - W}{W^{+} + W} \approx \frac{u_{v} - d_{v}}{u_{v} + d_{v} + 2u_{sea}}$$

CMS W muon asymmetry data (8 TeV)

arXiv:1603.01803, accepted by EPJC

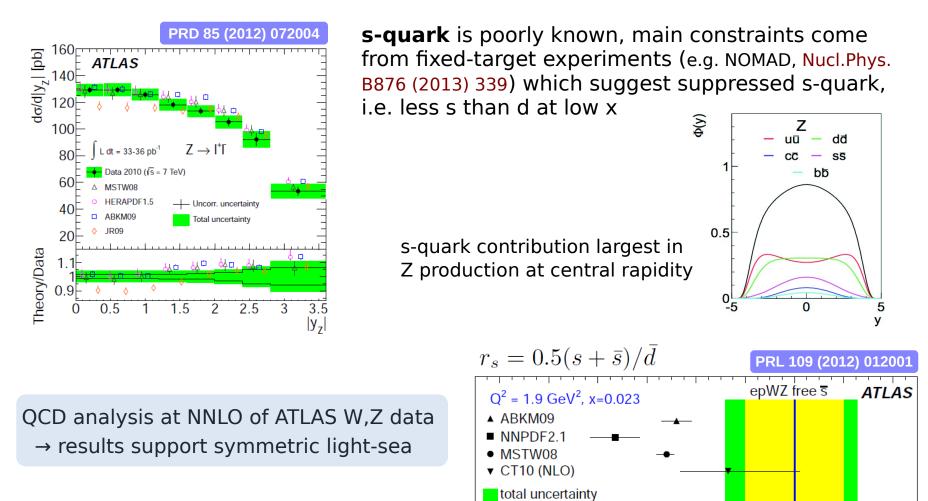

R. Plačakytė

CMS W⁺ and W⁻ distributions

arXiv:1603.01803

→ compared with theory predictions (FEWZ) at NNLO using different PDFs

→ good agreement predictions obtained with all PDFs



(systematic correlations provided in the paper)

R. Plačakytė

W and Z production: sensitivity to s-quark

ATLAS W[±] and Z inclusive differential cross sections (35 pb⁻¹)

25 Sept - 1 Oct 2016, Quy-Nhon, Vietnam

-0.2

experimental uncertainty

0.2

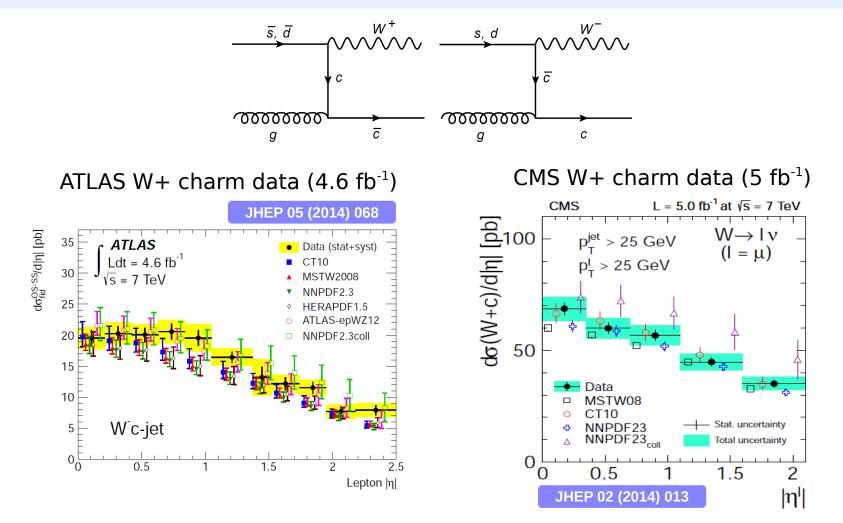
0.4

0.6

0.8

1.2

1

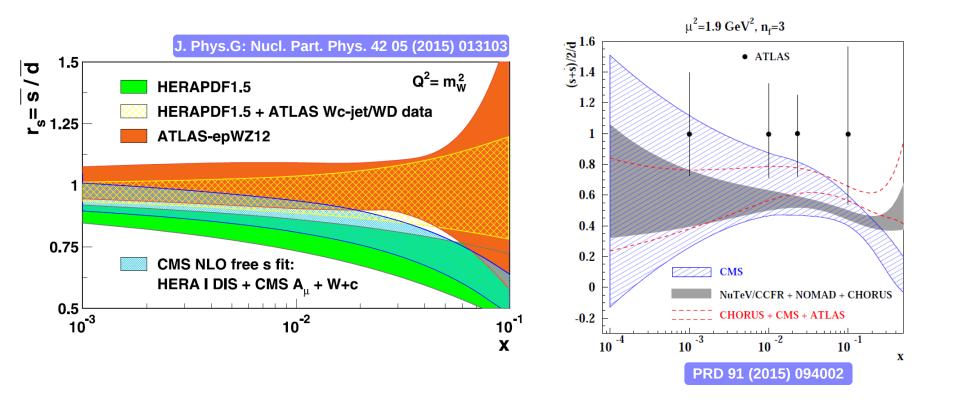

1.4

rs

10

W + charm Production at LHC

Measurement of W+c at LHC provide additional constrains to the s quark

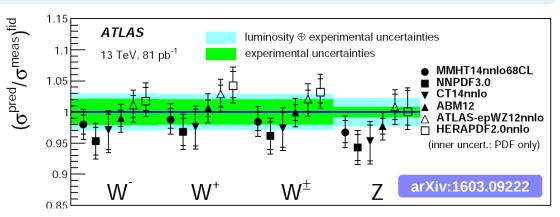


CMS in good agreement with CT10 while ATLAS data is above - indication of enhanced s fraction

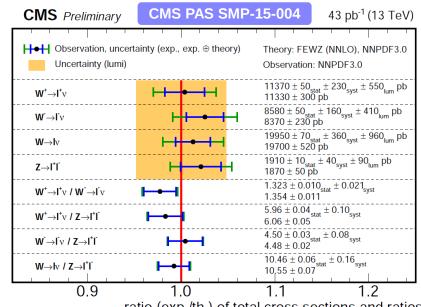
R. Plačakytė

Strange quark PDF

Comparison of the s-quark fraction determined by ATLAS and CMS (no fixed-target data, no additional assumptions) and with determination using fixed-target data

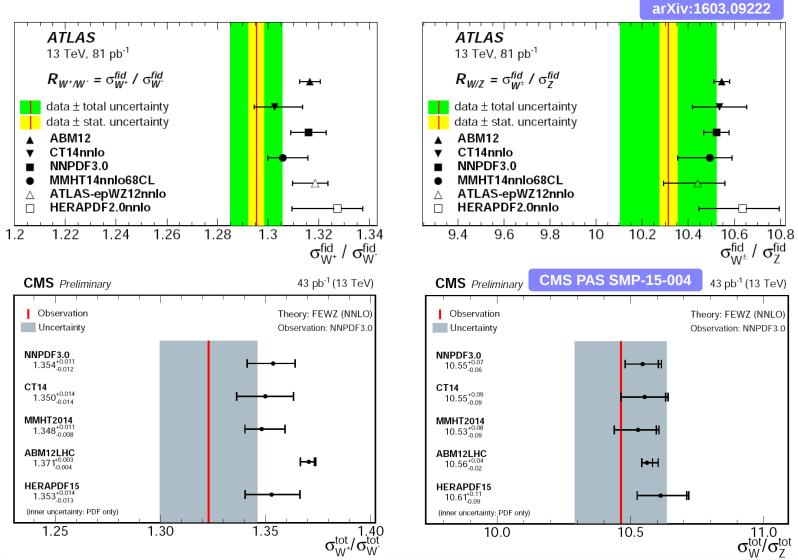

New data from LHC will bring more information about the s-quark

R. Plačakytė


W and Z production (13 TeV)

New 13 TeV measurement of W and Z boson cross sections with $\int L = 43 \pm 2 \text{ pb}^{-1}$ (CMS) and $\int L = 81 \text{ pb}^{-1}$ (ATLAS)

Measurements are compared to theory predictions at NNLO QCD+NLO QED using different PDFs

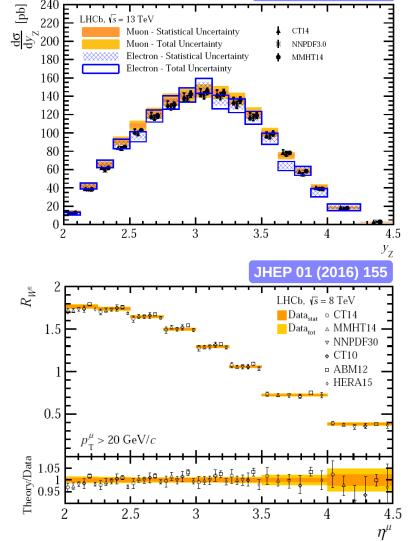


- Experimental uncertainties in cross-section ratios largely cancel
- \rightarrow (alternative) constraints to PDFs

ratio (exp./th.) of total cross sections and ratios

W and Z production (13 TeV)


W⁺ cross section tends to be slightly below the NNLO predictions (similar in ATLAS and CMS)

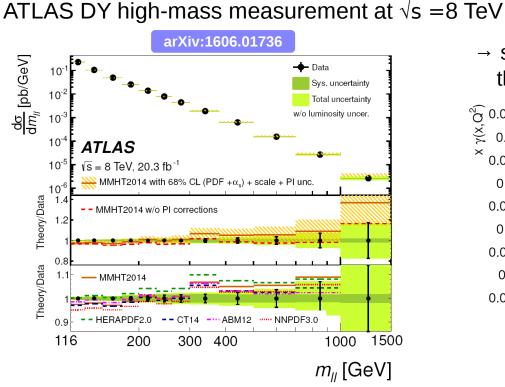

R. Plačakytė

W and Z production in the forward region

The forward acceptance of the LHCb detector allows the PDFs to be constrained at low Bjorken-x

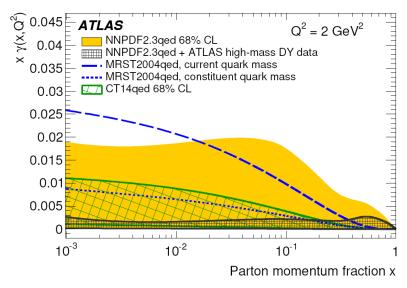
→ available W, Z, ratios and asymmetry measurements

→ large correlation between the uncertainties allows for sub-percent determination of the cross-section ratios


R. Plačakytė

W and Z production (low-mass, high-mass)

Drell Yan data mass spectra:

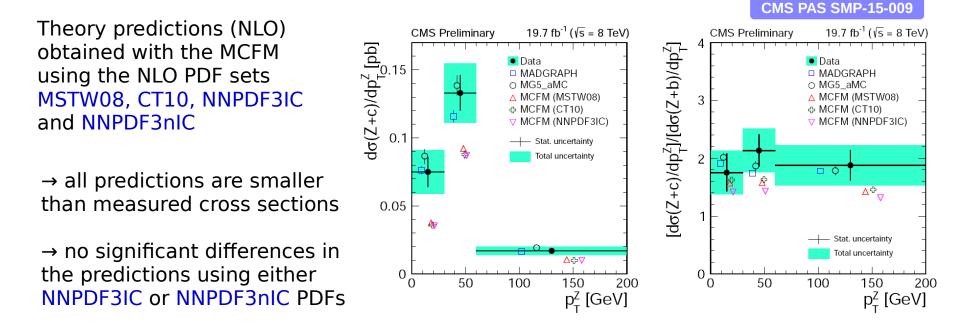

- \rightarrow high-mass: sensitive to sea quarks at high-x (and thus to new physics at high-scale)
- \rightarrow low-mass: similar at the low-x region

(EW corrections are important)

 \rightarrow at large m_{II} the measurements offer constraints on the large-x antiquark PDFs

→ sensitivity to the photon PDF through the photon-induced (PI) process $\gamma\gamma \rightarrow l^+l^-$

→ sensitivity study with the Bayesian reweighting (without fitting the data)

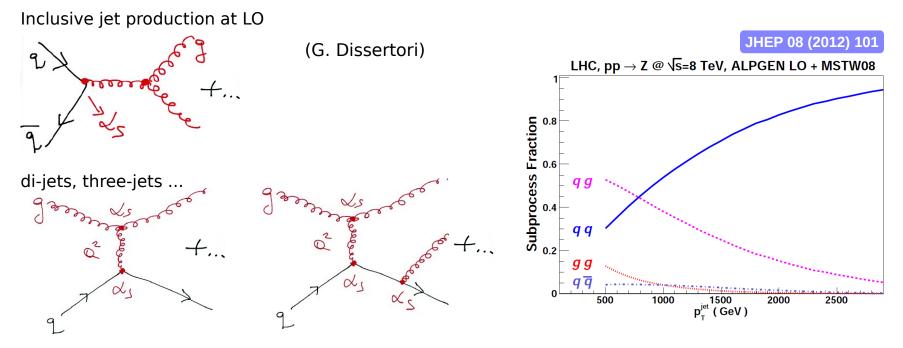

R. Plačakytė

Z+charm production

New CMS measurement at $\sqrt{s} = 8$ TeV ($\int L = 19.7 \ 0.5 \ \text{fb}^{-1}$) of the production cross section of a Z boson and at least one jet originating from a *c*-quark

 \rightarrow Z-boson candidates are identified through their decay into a pair of electrons or muons

- → heavy flavour jets in the kinematic region p_{T}^{jet} > 25 GeV, $|\eta^{jet}|$ < 2.5
- \rightarrow can address question of the intrinsic charm quark component in the proton



Jet Production at LHC

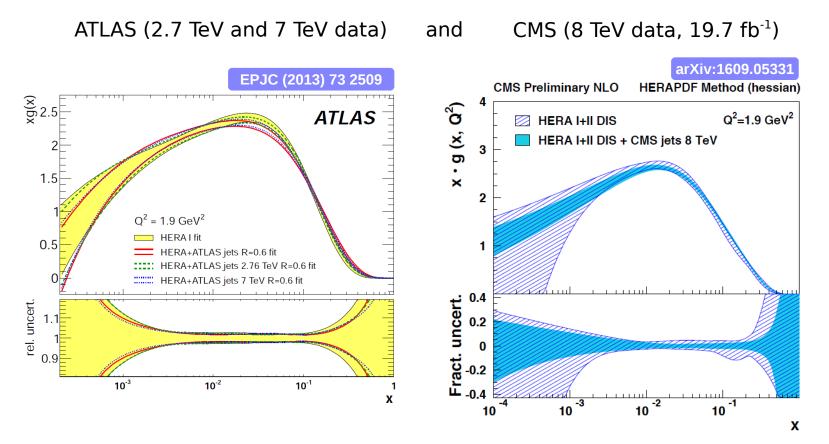
Jet production at LHC

 \rightarrow provides information about hard QCD, PDFs, strong coupling constant $\alpha_{_{\rm s}}$

→ PDFs and α_{s} depend on scale of the process → P_{T} of the jet

... and ratios (smart way of canceling large part of e.g. jet scale uncertainty)

 \rightarrow LHC jet data provide constrains in high-x region


 \rightarrow at high scales may reveal new physics (depend how well gluon at high x is known)

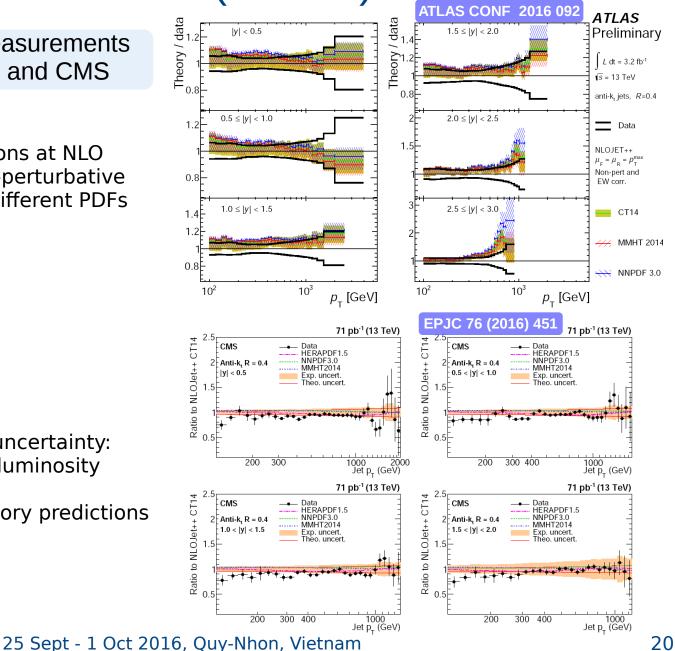
R. Plačakytė

Inclusive Jet Production

Inclusive jet measurements and QCD analysis of LHC data

QCD analyses at NLO with (HERA and) inclusive jet data performed by

→ jet data can help to improve gluon distribution function in high-x region and provides possibility to extract strong coupling constant α_{2}

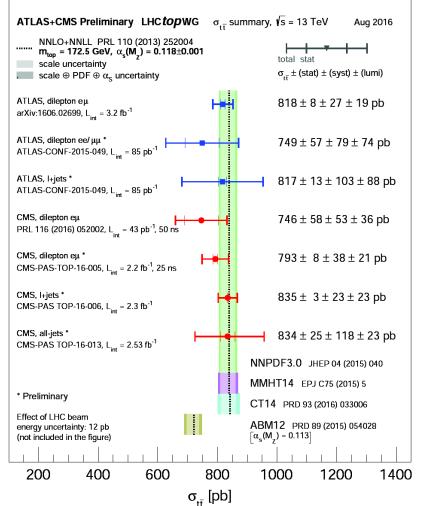

R. Plačakytė

Inclusive Jet Production (13 TeV)

Latest inclusive jet measurements at 13 TeV from ATLAS and CMS

 \rightarrow compared to predictions at NLO QCD (corrected for non-perturbative and EW effects) using different PDFs

- → dominant systematic uncertainty: jet energy calibration, luminosity
- → NNLO accuracy for theory predictions is needed

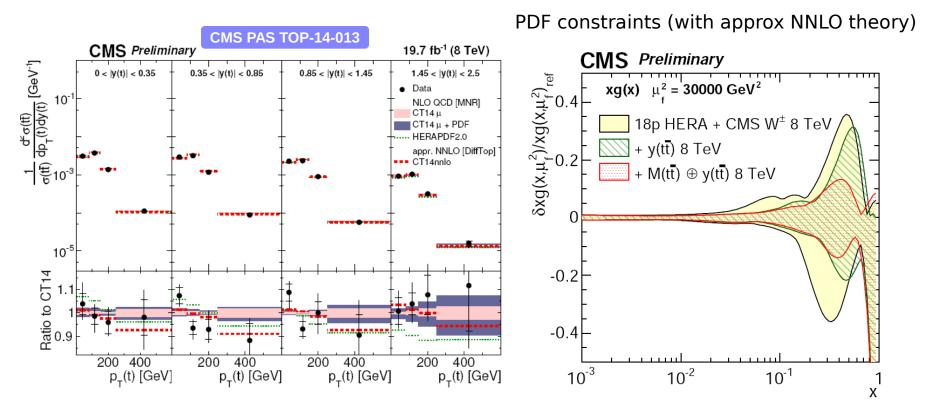

R. Plačakytė

Top Quark at LHC

LHC provides possibility for high statistics of top quark pairs $(t\overline{t})$ to be measured (gluon-gluon fusion is a dominant sub-process)

- \rightarrow tests of pertubative QCD, sensitive to new physics effects
- → probe of high-x gluon (high correlation between gluon, α_{c} and top quark mass)

Many new single-top and ttbar measurements at $\sqrt{s} = 5$, 7, 8 and 13 TeV from ATLAS and CMS


7000000

g 000000

R. Plačakytė

Top Quark at LHC: impact on PDFs

Differential $t\bar{t}$ production cross sections (dilepton $e^{\pm}\mu^{\mp}$ decay mode) from CMS at $\sqrt{s} = 8$ TeV, 19.7 fb⁻¹

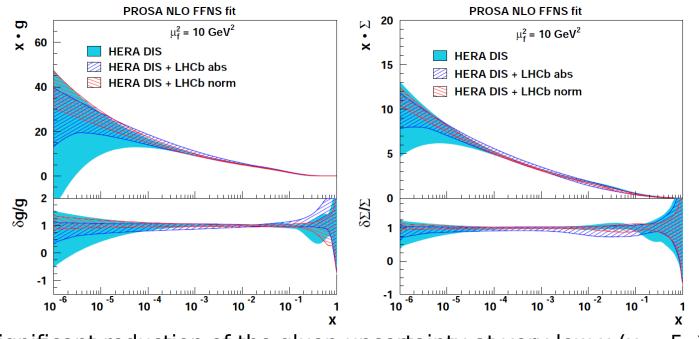
→ measured in the full phase space as a function of six different combinations of variables $(p_{\tau}(t), y(t); y(t), M(tt); y(tt), M(tt); \Delta \eta(t, t), M(tt); p_{\tau}(tt), M(tt); \Delta \phi(t, t), M(tt))$

 \rightarrow significant impact on the gluon distributions at large values of x is observed, in particular when the distribution of y(tt) in the M(tt) ranges

R. Plačakytė

Impact of LHCb Heavy Flavour Data to PDFs

LHCb heavy-flavour data impose additional constraints on the gluon and the sea-quark distributions at low x


 \rightarrow first time used to constrain PDFs

Nucl.Phys.B871 (2013)

JHEP 08 (2013) 117

EPJC 75 (2015) 8, 396

- \rightarrow NLO QCD analysis (together with HERA data) with the fixed-flavour number scheme
 - → absolute and normalised cross sections

 \rightarrow significant reduction of the gluon uncertainty at very low x (x ~ 5×10⁻⁶)

R. Plačakytė

Summary and Outlook

LHC data provide important constraints to PDFs

→ a wealth of precise LHC measurements (2.76, 5, 7, 8 and first 13 TeV) available, many of which are already used in different PDF fits

	CT14	MMHT14	NNPDF3.0	HERAPDF2.0	ABM12(ABMP)	CJ12(15)	JR14
HERA data	HERA I+ charm	HERA I charm jets	HERA I+ H1 and ZEUS II charm	HERA I+II	HERA I charm	HERA I	HERA I charm jets
Fix. Target DIS	\checkmark	\checkmark	\checkmark	×	V	JLAB, high x 🗸	JLAB, high x 🗸
Tevatron W,Z	\checkmark	\checkmark	\checkmark	×	×/√	\checkmark	×
Tevatron Jets	\checkmark	\checkmark	\checkmark	×	×	×	\checkmark
Fix. Target DY	\checkmark	\checkmark	\checkmark	×	√	\checkmark	\checkmark
LHC WZ	\checkmark	\checkmark	\checkmark	×	✓	×	×
LHC jets	\checkmark	\checkmark	\checkmark	×	×	×	×
LHC top	×	\checkmark	\checkmark	×	\checkmark	×	×
LHC charm	×	×	\checkmark	×	×/√	×	×
References	arXiv:1506.07443	arXiv:1412.3989	arXiv:1410.8849	arXiv:1506.06042	arXiv:1310.3059	arXiv:1212.1702	arXiv:1403.1852

V. Radescu, QCD@LHC16

→ LHC data sensitivity studies within the global PDF fit see P. Nadolsky, L. Harland-Lang, L. Del Debbio's talks

R. Plačakytė

Summary and Outlook

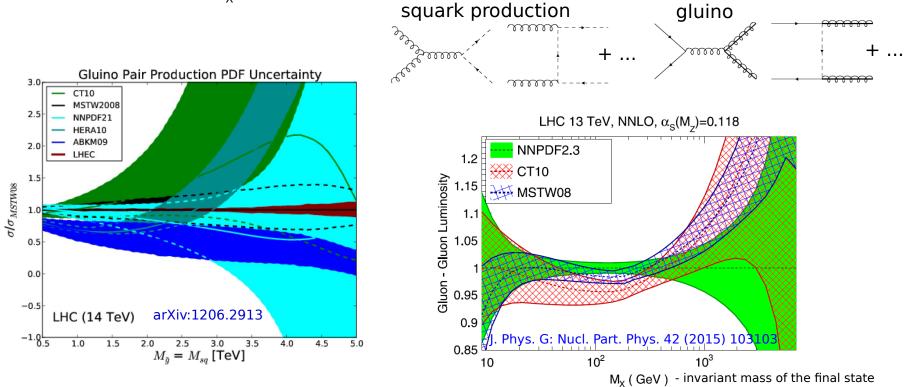
LHC data provide important constraints to PDFs

- → a wealth of precise LHC measurements (2.76, 5, 7, 8 and first 13 TeV) available, many of which are already used in different PDF fits
 → also can probe other QCD and EW aspects (e.g. boson polarisation, A_{FB} asymmetry, angular coefficients, MC tuning, ..)
- → only a subset of available data sensitive to PDFs were shown (not included e.g. V+jets, multiple jet data, inclusive photon, proton-lead data, ..)
 - \rightarrow additional details in F. Giuli, D. Hai Nguyen's and other parallel session talks
- → most of PDF sensitivity studies at LHC were obtained in comparison with HERA data alone (expected lesser effect in a global PDF fit)
 - \rightarrow most studies performed by experiments were done with xFitter (*A. Glazov's talk*)

Many new LHC measurements still to come, more precision, further improvements on PDFs

R. Plačakytė

Back-up slides


R. Plačakytė

Parton Distribution Functions

Parton Distribution Functions (PDFs) are of crucial for precision physics at hadron colliders because:

- → PDFs limit **the accuracy of the SM predictions** (including Higgs, W mass)
- → **reach of new physics** searches depends on PDF knowledge at high Bjorken-x

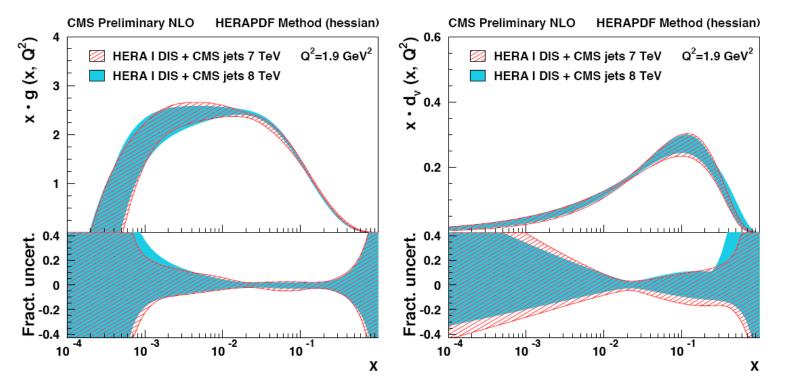
For example, the production of SUSY colored particles (squarks and gluinos) are sensitive to gluon at high $x=2m_y/\sqrt{s} \sim 0.2$ -0.7

R. Plačakytė

Recent CMS DY Measurements (8 and 13 TeV)

- Differential cross section and charge asymmetry for pp \rightarrow WX production at $\sqrt{s} = 8$ TeV arXiv:1603.01803
- Z + charm production in pp collisions at $\sqrt{s} = 8$ TeV CMS PAS SMP-15-009
- W boson production cross section in association with two b jets at $\sqrt{s} = 8$ TeV CMS PAS SMP-14-020
- Inclusive W and Z boson production cross sections at $\sqrt{s} = 13$ TeV

CMS PAS SMP-15-004

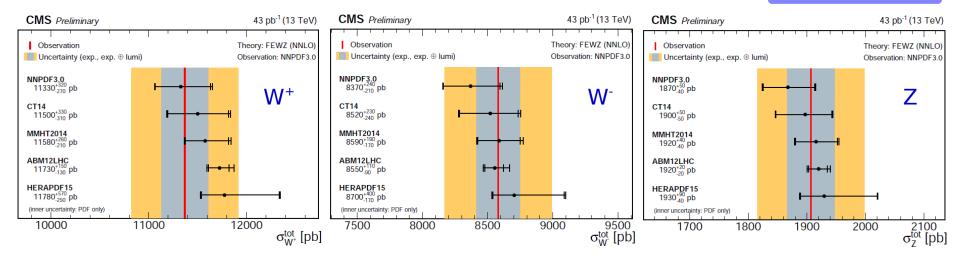

- Inclusive and differential Z boson production cross sections (d σ /dy, d σ /dp_T) at $\sqrt{s} = 13$ TeV CMS PAS SMP-15-011
- Differential Drell-Yan cross section (d σ /dm) in pp collisions \sqrt{s} =13 TeV CMS PAS SMP-16-009
- Transverse momentum spectra of weak vector bosons $(d\sigma/dp_T)$ at $\sqrt{s} = 8$ TeV
- Differential cross section for the production of a W ($\rightarrow\mu\nu$) boson in association with jets at $\sqrt{s} = 13$ TeV CMS PAS SMP-16-005
- Differential cross section of W ($\rightarrow \mu v$) boson in association with jets at $\sqrt{s} = 8$ TeV CMS PAS SMP-14-023

Inclusive Jet Production at CMS

Inclusive jet measurements and QCD analysis of LHC data

QCD analyses at NLO with (HERA and) inclusive jet data performed by

arXiv:1609.05331 CMS (8 TeV data, 19.7 fb⁻¹)


→ alternative fit reproducing 7 TeV QCD analysis settings (replacing 7 TeV by 8 TeV data), similar constraints on gluon distribution are observed

R. Plačakytė

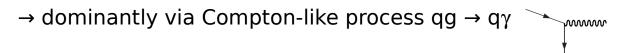
CMS W and Z cross sections at 13 TeV

New 13 TeV measurement of W and Z boson cross sections with $\int\!L$ =43 \pm 2 $pb^{\text{-1}}$

→ dominant systematic uncertainty: luminosity

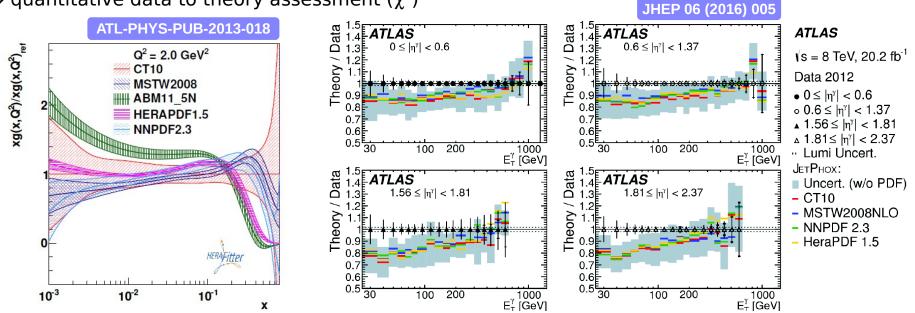
Compared with FEWZ (NNLO QCD and NLO order EW calculations) with various PDFs:

	NNPDF3.0	CT14	MMHT2014	ABM12LHC	HERAPDF15
$\sigma_{W^+}^{tot}$ [pb]	11330^{+320}_{-270}	11500^{+330}_{-310}	11580^{+260}_{-210}	11730^{+150}_{-130}	11780^{+570}_{-250}
$\sigma_{W^-}^{tot}$ [pb]	8370_{-210}^{+240}	8520_{-240}^{+230}	$8590^{+\overline{1}\overline{9}\overline{0}}_{-170}$	8550_{-90}^{+110}	8700^{+400}_{-170}
σ_W^{tot} [pb]	19700^{+560}_{-470}	$20020^{+\overline{5}\overline{6}\overline{0}}_{-\overline{5}\overline{5}0}$	20170_{-390}^{+430}	20280^{+260}_{-220}	20480^{+960}_{-410}
σ_Z^{tot} [pb]	1870_{-40}^{+50}	1900_{-50}^{+50}	1920_{-40}^{+40}	$1920_{-20}^{+\overline{20}}$	1930_{-40}^{+90}
$\sigma_{W^+}^{\overline{tot}}/\sigma_{W^-}^{tot}$	$1.354^{+0.011}_{-0.012}$	$1.350\substack{+0.014\\-0.014}$	$1.348\substack{+0.011\\-0.008}$	$1.371^{+0.003}_{-0.004}$	$1.353^{+0.014}_{-0.013}$
$\sigma_{W^+}^{tot} / \sigma_Z^{tot}$	$6.06\substack{+0.04\\-0.05}$	$6.06\substack{+0.06\\-0.06}$	$6.04\substack{+0.05\\-0.05}$	$6.11\substack{+0.02\\-0.01}$	$6.10\substack{+0.06\\-0.06}$
$\sigma_{W^-}^{tot} / \sigma_Z^{tot}$	$4.48\substack{+0.03\\-0.02}$	$4.49\substack{+0.03\\-0.03}$	$4.48\substack{+0.03\\-0.04}$	$4.46_{-0.01}^{+0.02}$	$4.51_{-0.03}^{+0.04}$
$\sigma_W^{tot} / \sigma_Z^{tot}$	$10.55_{-0.06}^{+0.07}$	$10.55\substack{+0.09\\-0.09}$	$10.53_{-0.09}^{+0.08}$	$10.56\substack{+0.04\\-0.02}$	$10.61\substack{+0.11\\-0.09}$


25 Sept - 1 Oct 2016, Quy-Nhon, Vietnam

R. Plačakytė

CMS PAS SMP-15-004


Prompt Photon Production at LHC

Prompt photon data at LHC is sensitive to gluon content at high x

ATLAS study of the inclusive photon data sensitivity to parton distributions

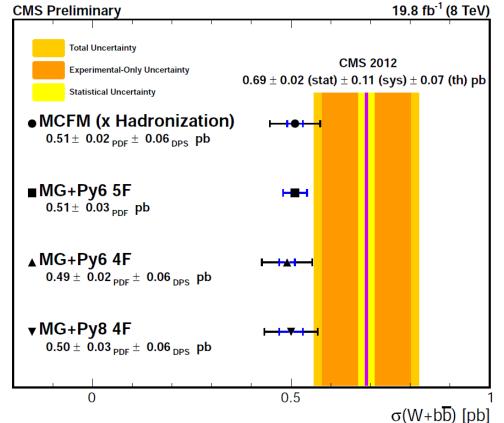
 \rightarrow quantitative data to theory assessment (χ^2)

 \rightarrow about half smaller uncertainties in new 8 TeV measurement

 \rightarrow data show potential to improve gluon distribution

R. Plačakytė

CMS W+bb measurement at 8 TeV


Extension of earlier W+bb measurement (with muons) with both, muon and electron, W decay channels and $\int L = 19.8 \text{ fb}^{-1}$

→ analysis with $p_{T}^{I} > 30$ GeV, $|\eta^{I}| < 2.1$ and b-tagged jets $p_{T}>25$ GeV and $|\eta|<2.4$

Comparison with predictions (hadron level) including the estimated hadronization and double parton scattering (DPS) corrections

 \rightarrow agree within 1 standard deviation

→ useful to test PDFs with different number of flavours

CMS differential Z measurement at 13 TeV

CMS PAS SMP-15-011

 1870^{+50}_{-40}

1900

1920

1920

1930

NNPDF3.0

MMHT2014

ABM12LHC

HERAPDF15

CT14

Inclusive and differential Z production at 13 TeV in the μ final state with $\int L = 2.3$ fb⁻¹

Inclusive cross section (in the dilepton mass range of 60 to 120 GeV) and comparison with NNLO predictions (FEWZ) using different PDFs σ_{7}^{tot} [pb]

 $\sigma(pp \rightarrow ZX) \times \mathcal{B}(Z \rightarrow \ell^+ \ell^-) = 1870 \pm 2 \text{ (stat)} \pm 35(\text{syst}) \pm 51 \text{ (lumi) pb}$

Inclusive and **differential** Z production at 13 TeV in the μ final state with $\int L = 2.3$ fb⁻¹

- \rightarrow measurement as a function of p_{τ} , angular variable φ^* , $y^{\mu+\mu-}$ and $p_{\tau}^{\mu+\mu-}$
- → quark-gluon scattering dominates at high p_T (low p_T range is governed by ISR and the transverse momentum of the initial-state parton inside the proton)
- \rightarrow angular variable φ^* is expressed via pseudo-rapidity of muon pair

$$\phi_{\eta}^* = \tan(\frac{\pi - \Delta \phi}{2}) \cdot \sin(\theta_{\eta}^*) \qquad \cos(\theta_{\eta}^*) = \tanh(\frac{\eta^- - \eta^+}{2})$$

probes Z boson p_{τ} but depends on direction of muon \rightarrow smaller exp. uncertainty

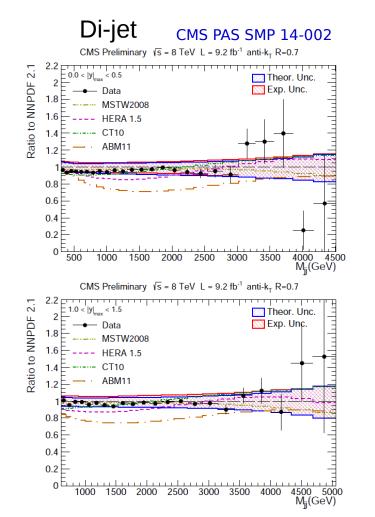
R. Plačakytė

CMS differential Z measurement at 13 TeV

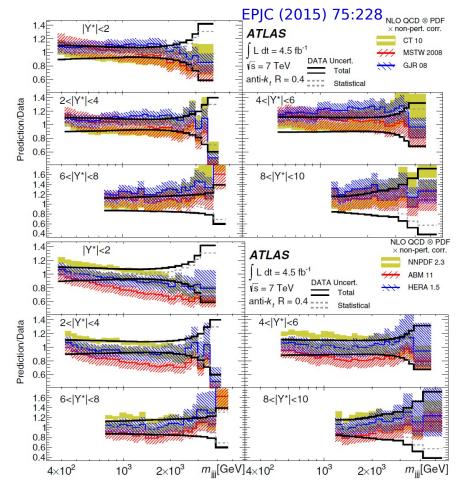
CMS PAS SMP-15-011

 $\times 10^{3}$ 2.3 fb⁻¹ (13 TeV) 2.3 fb⁻¹ (13 TeV) dơ/dø_n* [pb] η <2.4, p₊>25 GeV POWHEG/Data aMC@NLO/Data /// Data CMS Preliminary PDF set: NNPDF3.0 1.2 CMS Preliminary aMC@NLO POWHEG FEWZ 1 0.9 FEWZ/Data |η|<2.4, p₊>25 GeV 0.9 PDF set: NNPDF3,0 10^{-2} 10^{-1} 10^{-3} 10^{-2} 10^{-1} 10^{-3} 2.3 fb⁻¹ (13 TeV) 2.3 fb⁻¹ (13 TeV) dơ/dy^{µ⁺µ¹} [pb] POWHEG/Data aMC@NLO/Data 🔶 Data CMS Preliminar 1.2 CMS Preliminary aMC@NLO 500 POWHEG FEWZ 400 300 0.9 200 FEWZ/Data 100 η|<2.4, p_τ>25 GeV PDF set: NNPDF3.0 0.02.0 0.0 0.5 1.0 1.5 2.0 0.5 1.5 1.0|y^{µ⁺µ⁺}₁ |y^{μ⁺μ⁻}

Data compared to MADGRAPH5_AMC@NLO, POWHEG and FEWZ


 \rightarrow no generator is able to describe the data in all of the studied phase-space

R. Plačakytė


Di- and three-jet Measurements

Recent di-jet and three-jet measurements from ATLAS and CMS

 \rightarrow comparison with different PDFs: some tension with e.g. ABM11 PDF observed

Three-jet (probe different phase space due to different combination of the initial-state partons)

R. Plačakytė

Heavy Quark Treatment in PDFs

QCD factorisation:

 $\sigma(\alpha_s,\mu_R^2,\mu_F^2) = \sum_{a,b} \int_0^1 f_a(x_1,\mu_F^2) f_b(x_2,\mu_F^2) \hat{\sigma}(x_1,x_2;\alpha_s,\mu_R^2,\mu_F^2) + \dots$ measured cross section =

a, b - partons in the proton (g, q, qbar) of different flavours

 if #flavours fixed: Fixed Flavour Number Scheme (FFNS) only light flavours in the proton: i = 3 (4) c- (b-) quarks massive, produced in boson-gluon fusion, $Q^2 \gg m_{_{HO}}^{^2}$: can be less precise, NLO coefficients contain terms ~ $ln(Q/m_{_{HQ}})$

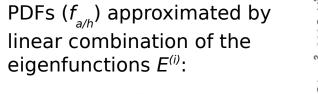
if #flavours variable: Variable Flavour Number Scheme (VFNS)

- Zero Mass VFNS: all flavours massless. Breaks down at $Q^2 \sim m_{_{HO}}^{_2}$
- Generalized Mass VFNS: different implementations provided by PDF groups, smooth matching with FFNS for $Q^2 \rightarrow m_{_{HO}}^2$ must be assured

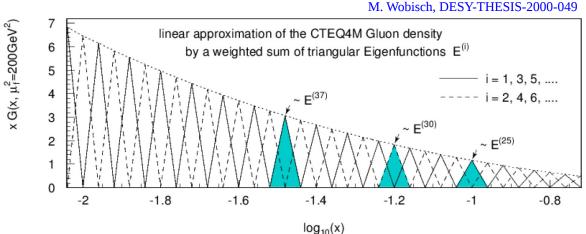
 \rightarrow m_c is a parameter (M_c)

treatment of heavy quarks is important in PDFs

R. Plačakytė


PDF Tools

Often perturbative higher-order calculations are extremely time consuming → not possible to include into PDF fits


solution: fast grid techniques

- \rightarrow based on assumption that PDF can be approximated by a set of the interpolation functions
- → after first time (full) calculation, technique with interpolation functions can be used for the fast theory prediction calculations (for any PDF)

Currently available tools: FastNLO Eur.Phys.J. C19 , 289 (2001), hepph/0609285 and APPLGRID hepph/0510324, arXiv:0911.2985

$$f_{a/h}(x) \simeq \sum_i f_{a/h}(x_i) E^{(i)}(x)$$

R. Plačakytė