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Extension of tools to

 NNLO and beyond N3LO- but we don’'t have NNLO for everything yet

* AND OR NNLO+parton showers (often with LO PDF from different family)
 Resummation at low-pt, low-x, high-x

« Fragmentation/hadronisation corrections

« Scale variations

Is any process really OK at fixed order? (apart from inclusive DIS)

Even W and Z inclusive production is done under pt-cuts — fiducial volume.
So our inability to describe the pt spectrum affects it at the ~0.5% level, data
accurate to 0.5% are now available

FEWZ vs DYNNLO differences

 QED —is LuxQED the be-all and end-all?
» What happens if we cut out low Q2 data and fit Q2>10
le cut out much of higher twist region

AFTER we evolve back up to LHC scales?

« ABM vs the rest



Some remarks on ABM vs the rest (JR is defunct)

It is processes which depend on the gluon PDF where ABM differs most- such as
jet production and t-tbar profuction AND Higgs
It is fine for g-gbar Drell-Yan sort of processes 315

Gluon-Fusion Higgs production, LHC 13 TeV
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This is because of its soft high-x gluon AND
Lower preferred value of alpha_s(M_2Z)
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And those are because of the use of the FFN %ssw
VS a GMVFN heavy quark scheme TR ey MO
This has been established by studies by both Bk 7= 10000 Ge V2

Thorne (MMHT) and Rojo(NNPDF) who 9t % HERAPDF2.0

Re-do their fits changing ONLY the heavy g I MM T4

quark scheme and obtain similar softer 9 T —NRPDFS.0

Gluons and lower vaues of alpha_s(M_Z) g2 [

So now we can focus the argument on what

Is the right heavy quark scheme

* FFN does not resum In(Q2/mc2) terms 0.3
 GMVFN involve matching between massive
calcuations at threshold and zero mass A
treatment at high scale 10% 10° 10°







Need for NNLO
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Adding NLO top (pt-top, mass t- But adding NLO jets (2.76/7 Tev
tbar, y t-tbar) ratios)
Pulls to a softer high-x gluon Pulls to a harder high-x gluon

This is probably not new physics but differing NNLO corrections,
we don’t have full NNLO jets QUITE yet

We have full NNLO top but so far only k-factor technology can be
used- no fast grids

Also need statistical correlations between different distributions for
top— or double differential



Are the fixed order calculations always adequate?

e.g. Zpt, W+jets, Z+jets, also W+b,c, Z+b,c
« Can one use re-summed calculations-

NNLO calculations for Z+jets have improved a previously poor description?
Are fixed order calculations even adequate for W, Z inclusive production when we

have to apply pT cuts? FEWZ/DYNNLO differ by ~.5%
Experimental precision of < 0.5% challenges the predictions
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And the same question can be asked for Zpt
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Z production at 13 TeV (cont.)

Generator:
aMC@NLO,
POWHEG,
FEWZ using
NNPDF3.0

Discrepencies
are observed
in some
regions (within
errors)
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Z p; as an input to PDFs ?
It is not clear to me that this is very
clean theoretically

* Needs low-pt resummation

* Is even NNLO good enough?

« Do we understand the normalisation
of the data in this plot of Z+jets to
NNLO
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Including the QED part in the proton is now becoming

essential
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These plots are amusing but the uncertainties on Pl come from the NNPDF
Not even NNPDF themselves think things are so bad now because of the new photon

PDF calculations.
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LUXqged is the pink one which is
normalised to unity
Since it only relies on knowledge of
the quark distributions it has far
better precision

are LUXqged with other approaches
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ratio to QCD result

pp — I, 13 TeV (QCD only at LO)

pp = I*I, 13 TeV (QCD only at LO)
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LUXQED photon has few % effect on di-lepton
spectrum and negligible uncertainties
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HKR also compare to LUX ged

e Have demonstrated that standard PDF approach very close to
[.UXqed when taking same data input for ~(xz, Q7).

— Possible to unify approaches. Consider constraints from both
LHC and low (?structure function data. Full treatment of
uncertainties and coupled DGLAP evolution.
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This is consistent with what we have found with ATLAS 8 TeV HMDY data
using NNPDF-style reweighting

q D.IK ATLAS 02 — 1@4 GE‘UE ]
= AN 1 NNPDF2.3ged 68% CL -
: NN\ EE NNPDF2.3ged + ATLAS high-mass DY data
0.0Bk= \ — MRST2004qged, current quark mass
\ ---- MRST2004ged, constituent quark mass
[ CT14ged 68% CL
0.06 o

0.04 —

0.02




16



What happens if we cut out low Q2
data and fit Q2>10

le cut out much of higher twist region 05l
And much of very low-x region |
AFTER we evolve back up to LHC
scales?

xf

H1 and ZEUS
uz=10000 GeV?

E— HERAPDF2.0 NNLO

—— HERAPDF2.0HiQ2 NNLO
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Going beyond DGLAP at low-X

Ag an alternative to DGLAP HERAFitter includes algo Dipole models:

= Studied by the H1 collaboration in comparing different models on FL:
* Dipole Models implemented in HERAFitter:

FurPhoye.J.C71 (2011) Hi Collaboration

+ GBW model: irst modal FLoaf5F i E ¥ 8 E 3
v IIM (based on BE-squation)
+ BGE (bacod on GEW, but gluon evolved g3 ' ]‘
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7 Some tension between fixed-order predictions and data in the
low-x region reached by HERA:

. Q’=35GeV’ | Q'=45GeV’ | £,
. J 25
Y - . N
% . x =
L ? “Q L ‘\ Eg)
.‘_. \.\ RY)
— \....---- — "‘-.‘-‘- EO
L "“ L "'1-‘ °w
UI.__l_l_l 11 | |l||_|.||J | lHlllﬂ l|lH|.|.|J_| Hrhl._ _|.|.|.||J_ l_ ||Il||ll| | ||H|.|.|J ||||‘Fﬂl
10° 10" 10° 107!

X

7 A similar effect was observed some time ago in the NNPDF
framework by F. Caola et al. [arXiv:1007.5405].

& Strong suggestion of the need for small-x resummation.



The x2 of the HERAPDF fit decreases with increasing Q2 cut. It helps to add higher twist
terms to F,. Note Low Q? at HERA is low x — maybe this could also be addressed with
low-x resummation

i = Fa - The higher twist terms are only significant in F.

A larger F, is predicted which fits the high-y turn

e 3 - g-sew | _g-aseet | OVer Of the reduced cross section much better. This
TE n l\\ reduces the x2 of the NNLO fit by 47.
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J In collaboration with Marco Bonvini, quite some work has been

done to interface to interface the HELL code to APFEL.:

¢ HELL implements small-x resummed splitting functions up to NLL
accuracy based on the ABF approach [arXiv:0802.0032].

¢ 1t will soon implement also small-x resummed DIS coefficient
functions (Marco Bonvini, Luca Rottoli and Tiziano Peraro are
presently working on that).
¢ The actual interface is already in place and fully operative.

7 As a proof of concept, we have already run PDF fits with small-x
resummed evolution obtaining encouraging results.

7 A fully consistent PDF fit would require resummed coeflicient
functions which should be available in HELL within a few weeks.

And don’t completely forget
high-x threshold resummation
TROLL for In(1-x)

¢ Enhancement of the fitted %uon PDF at small values of x due to

the relative suppression of t

e resummed evolution.

& Compensation expected when also resummed coefhicient functions

will be introduce
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Further remarks on dependence on Q2
Compare heavy flavour schemes at NLO and compare NLO to NNLO

H1 and ZEUS prellmlnary Hl and ZEUS prellmlnary
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Treating F, to O(ag) — the same order as F, | RTOPT NNLO is marginally worse than

yields better x2 than treating FL to O(ag?) NLO
almost independent of heavy flavour scheme| FONLL NNLO is a lot worse than NLO
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