Higher order calculation for W mass

Two-loop master integrals for the mixed QCD \times EW corrections to Drell-Yan processes

Stefano Di Vita

based on work with Roberto Bonciani, Pierpaolo Mastrolia and Ulrich Schubert, JHEP 1609 (2016) 091 [arXiv:1604.08581]

DESY (Hamburg)
Precision theory for precise measurements at LHC and future colliders Sep 28, 2016

I barely have 1 "phenomenological" slide ... hold on, the coffee break is close!

Outline

(1) Drell-Yan processes: a very (very!) compact introduction
(2) Two-loop mixed QCD \times EW corrections: what to compute
(3) Two-loop mixed QCD \times EW corrections: how we computed

Outline

(1) Drell-Yan processes: a very (very!) compact introduction (2) Two-loop mixed QCD \times EW corrections: what to compute (3) Two-loop mixed QCD \times EW corrections: how we computed

What this is about [Drell, Yan 70; ...; A Aloi et et a. 16]

"my phenomenological slide" ${ }^{(+)}$

- $l \bar{\ell}^{\prime}$ production @ hadron colliders
- LO: s-channel Z / W exchange
- useful process:
- constrain PDFs
- direct determination of m_{W} template fit of $\ell \nu_{\ell}$ transverse mass distribution
- background to BSM

- recall: SM relates m_{W} to m_{Z} and EW fit is a factor 2 more precise than direct determination (PDG $80.385 \pm 0.015 \mathrm{GeV}$)
- direct measurement limited by stat. (PDFs uncert. $\sim 10 \mathrm{MeV}$)

Higher order corrections to Drell-Yan cross section

Fixed order expansion

power-counting: $\alpha_{s}^{2} \sim \alpha$

$$
\sigma_{D Y}=\sigma_{0}
$$

$$
\begin{array}{rrrr}
+\alpha_{s} \sigma_{\alpha_{s}}+ & \alpha_{s}^{2} \sigma_{\alpha_{s}^{2}}+ & \alpha_{s}^{3} \sigma_{\alpha_{s}^{3}}+\ldots & \mathrm{QCD} \tag{QCD}\\
+\alpha \sigma_{\alpha}+\alpha^{2} \sigma_{\alpha^{2}}+ & \alpha^{3} \sigma_{\alpha^{3}}+\ldots & \mathrm{EW} \\
+\alpha \alpha_{s} \sigma_{\alpha \alpha_{s}}+\alpha \alpha_{s}^{2} \sigma_{\alpha \alpha_{s}^{2}}+\ldots & \mathrm{EW} \times \mathrm{QCD}
\end{array}
$$

History of QCD corrections I apologize for any omision

- $p p^{\prime} \rightarrow V\left[d^{2} \sigma / d Q^{2} d y\right]$
- NLO [Altarelli, Elis, Martinelli 79; + Greco 84]
- NNLO [Matsuura, van der Marck, van Neerven 89; Hamberg, van Neerven, Matsuura 9]
- $p p^{\prime} \rightarrow V \rightarrow \ell \bar{\ell}^{\prime}$, fully differential
- Full NLO (MCFM) [Giele, Glover, Kosower 93; Campbell, Ellis, Rainwater 03]
- Full NNLO (FEWZ, DYNNLO) [Melnikov, Petriello 06; + Anastasiou, Dixon 04; Catani, Grazzini 07; + Cieri, Ferrera, de Florian 09]
- $p p^{\prime} \rightarrow V\left(\rightarrow \ell \bar{\ell}^{\prime}\right)+X$
- NLO, $V+j\left[d^{3} \sigma / d Q^{2} d p T d y\right] \quad \begin{aligned} & \text { [Ellis, Martinelli, Petronzio 83; Arrold, Reno 89; } \\ & \text { Gonsalves, Pawlowski, Wai 89; Brandt, Kramer, Nyeo 91] }\end{aligned}$
- NLO, $\ell \overline{\ell^{\prime}}+1,2 j$ [Giele, Glover, Kosower 93 ; Campbell, Ellis 02; + Rainwater 03]
- NLO, $\ell \bar{\ell}^{\prime}+\gamma$ [Dixon, Kunszt, Signer 98]
- NNLO, $V+j$ [Boughezal et al. 15,16; Gehrmann-De Ridder et al. 15;]
- Resummation and matching to PS
- Soft g through $\mathrm{N}^{3} \mathrm{LL}, p_{T}^{V} / M_{V}$ through NLL, NLO and NNLO matching (MC@NLO, POWHEG, DYNNLOPS), ... [Sterman 87; Catani, Trentadue 89; 91; Moch, Vogt 05;

[^0]
History of EW corrections I apologize for any omisision

- W production at NLO EW
- Pole approx [Wackeroth, Hollik 97; Baur, Keller, Wackeroth 99]
- Full [Zykunov et al. 01; Dittmaier, Krämer 02,05; Baur, Wackeroth 04 (WZgrad); Arbuzov et al. 06 (SANC); Carloni Calame et al. 06 (HORACE); Hollik, Kasprzik, Kniehl 08; Bardin et al. 08 WINHAC]
- Z production at NLO EW
- QED
[Barberio, van Eijk, Was 91,94; Baur, Keller, Sakumoto 98; Golonka, Was 06 (PHotos);
Placzek, Jadach 03; + Krasny 13 (whinac)]
- Full [Baur, Wackeroth 04; + Brein, Hollik, Schappacher 02 (WZGRAD); Zykunov et al. 07; Carloni Calame et al. 07 (HORACE); Dittmaier, Huber 12; Arbuzov et al. 07 (SANC)]
- $V+j$ production at NLO EW
- large p_{T}^{W} [Kühn, Kulesza, Pozzorini, Schulze 04]
- EW [Denner, Dittmaier, Kasprrik, Muck 09,11,12; Kallweit, Lindert, Maierhöfer, Pozzorini, Schönher 14, 15]
- also 2-loop $V+\gamma$ [Gehrmann, Tancredi 11]
- NNLO QCD, NLO EW (FEWZ) [Melnikov, Petriello o6; Li, Petriello 12; + Gavin, Quackenbush 12]
- NLO+PS (POWHEG) [Barre, Montagna, Nason, Nicrosini, Picinini i 12; +Vicini 13; Bermaciak, Wackeroth 12]

QCD \times EW corrections: not yet fully available

QCD \times EW corrections: not yet fully available

- What is available?
- Two-loop W/Z form factors [Czarnecki, Kühn 96; Kotikov, Kühn, Veretin 08; Kara 13]
- Virtual QCD \times QED [Kilgore, Sturm 11]
- Expansion around pole (in the resonant region) [Dittmaier, Huss, Schwinn 14,16]
- Monte Carlo estimates through NLO QCD \times NLO EW (with higher orders) see F. Piccinini's talk
- Why bother?
- Bulk of corrections to inclusive obs comes from resonant region ...
- ... but for accurate differential distributions in regions different from resonance (and to check the pole expansion), the full calculation is needed
- Interesting problem from the math perspective
- What to do?
- Tree-level $2 \rightarrow 4$ is by now a solved problem
- $\mathcal{O}(\alpha)$ corrections to $V+j$ are known
- $\mathcal{O}\left(\alpha_{s}\right)$ corrections to $V+\gamma$ are known
- Let's tackle the two-loop contribution!

Outline

(1) Drell-Yan processes: a very (very!) compact introduction

(2) Two-loop mixed QCD \times EW corrections: what to compute

Drell-Yan dilepton production: virtual corrections $\quad m_{q, \ell}=0$

Propagator NNLO QCD \times EW corrections: e.g.

Vertex NNLO QCD \times EW corrections: e.g.

NLO QCD

NNLO QCD \times EW, factorizable, (1-loop) ${ }^{2}$

- quarks in the initial state
- leptons in the final state
- no QCD corrections there at 1 - and 2-loops
- no gluon exchange with initial state at 1- and 2-loops

NNLO QCD \times EW, factorizable, 1PI

Vertex NNLO QCD \times EW corrections: e.g.

NLO QCD

NNLO QCD \times EW, factorizable, (1-loop) ${ }^{2}$

NNLO QCD \times EW, factorizable, 1 PI

Box NNLO QCD \times EW corrections: e.g.

NLO EW, non-factorizable
leptons in the final state

- no QCD corrections at 1-loop
- no gluon exchange with initial state

- can get boxes only by dressing the non-factorizable NLO EW

Two-loop mixed QCD \times EW corrections: $q \bar{q} \rightarrow \ell^{+} \ell^{-}$

- Do it carefully (FeynArts [Hahn 01])
- One can map all the Feynman diagrams onto 3 families
- The corrections to the neutral current DY process never involve W and Z at the same time

$\left(b_{1}\right)$

$\left(a_{1}\right)$

$\left(a_{2}\right)$

$\left(b_{2}\right)$

$\left(b_{3}\right)$
- Topology A well known
[Smirnov 99; Gehrmann, Remiddi 99]
- Topologies B-C unknown so far

$\left(c_{1}\right)$

$\left(c_{2}\right)$

Two-loop mixed QCD \times EW corrections: $q \bar{q}^{\prime} \rightarrow \ell^{-} \bar{\nu}_{\ell}$

- Do it carefully (FeynArts [Hahn 01])
- One can map all the

Feynman diagrams onto 4 families

- The corrections to the charged current DY process also involve W and Z at the same time
- Topology A well known

(b3)

$\left(d_{1}\right)$

$\left(d_{2}\right)$

$\left(d_{3}\right)$

Outline

(1) Drell-Yan processes: a very (very!) compact introduction

(2) Two-loop mixed QCD \times EW corrections: what to compute

(3) Two-loop mixed QCD \times EW corrections: how we computed

Let's make life a bit simpler

- Families with 1 or 2 degenerate massive propagators $\Rightarrow\left(s, t, m_{W, Z}^{2}\right)$
- Family with 2 different massive propagators $\Rightarrow\left(s, t, m_{W}^{2}, m_{Z}^{2}\right)$
- We exploit $\Delta m^{2} \equiv m_{Z}^{2}-m_{W}^{2} \ll m_{Z}^{2}$
- Expanding for instance the Z propagators around m_{W}

$$
\frac{1}{p^{2}-m_{Z}^{2}}=\frac{1}{p^{2}-m_{W}^{2}-\Delta m^{2}} \approx \frac{1}{p^{2}-m_{W}^{2}}+\frac{m_{Z}^{2}}{\left(p^{2}-m_{W}^{2}\right)^{2}} \xi+\ldots
$$

where

$$
\xi=\frac{\Delta m^{2}}{m_{Z}^{2}}=\frac{m_{Z}^{2}-m_{W}^{2}}{m_{Z}^{2}} \sim \frac{1}{4}
$$

- The coefficients of the series in ξ are Feynman diagrams with 3 scales
- The expanded denominators will appear raised to powers $>1 \Rightarrow$ IBP

$\left(b_{2}\right)$

$\left(c_{2}\right)$

The art of computing Feynman integrals

The one-loop four-point function is defined by

$$
\begin{aligned}
& D\left(p_{1}, p_{2}, p_{3}, p_{4}, m_{1}, m_{2}, m_{3}, m_{4}\right) \\
& \quad=\int \mathrm{d}_{n} q \frac{1}{\left(q^{2}+m_{1}^{2}\right)\left(\left(q+p_{1}\right)^{2}+m_{2}^{2}\right)\left(\left(q+p_{1}+p_{2}\right)^{2}+m_{3}^{2}\right)\left(\left(q+p_{1}+p_{2}+p_{3}\right)^{2}+m_{4}^{2}\right)}
\end{aligned}
$$

Using Feynman parameters this may be rewritten in the form quoted in sect. 2:

$$
\begin{equation*}
D=i \pi^{2} \int \mathrm{~d}_{4} u \frac{\delta\left(\sum u-1\right) \theta\left(u_{1}\right) \theta\left(u_{2}\right) \theta\left(u_{3}\right) \theta\left(u_{4}\right)}{\left[\sum m_{i}^{2} u_{i}+\sum_{i<i} p_{i j}^{2} u_{i} u_{j}\right]^{2}} . \tag{6.2}
\end{equation*}
$$

Here $p_{i f}^{2}$ is the square of the difference of the four-momenta flowing through propagators i and j. Thus for instance $p_{12}^{2}=p_{1}^{2}, p_{13}^{2}=\left(p_{1}+p_{2}\right)^{2}$, etc. Introducing variables z, x, y this may be cast in the form

$$
\begin{equation*}
\frac{D}{i \pi^{2}}=\int_{0}^{1} \mathrm{~d} x \int_{0}^{x} \mathrm{~d} y \int_{0}^{y} \mathrm{~d} z\left[a x^{2}+b y^{2}+g z^{2}+c x y+h x z+j y z+d x+e y+k z+f\right]^{-2}, \tag{6.3}
\end{equation*}
$$

with

$$
\begin{align*}
& a=-p_{34}^{2}=-p_{3}^{2}, \quad b=-p_{23}^{2}=-p_{2}^{2}, \quad g=-p_{12}^{2}=-p_{1}^{2}, \\
& c=-p_{24}^{2}+p_{23}^{2}+p_{34}^{2}=-2\left(p_{2} p_{3}\right), \quad h=-p_{14}^{2}-p_{23}^{2}+p_{13}^{2}+p_{24}^{2}=-2\left(p_{1} p_{3}\right), \\
& j=-p_{13}^{2}+p_{12}^{2}+p_{23}^{2}=-2\left(p_{1} p_{2}\right), \\
& d=m_{3}^{2}-m_{4}^{2}+p_{34}^{2}=m_{3}^{2}-m_{4}^{2}+p_{3}^{2}, \\
& e=m_{2}^{2}-m_{3}^{2}+p_{24}^{2}-p_{34}^{2}=m_{2}^{2}-m_{3}^{2}+2\left(p_{2} p_{3}\right)+p_{2}^{2}, \\
& k=m_{1}^{2}-m_{2}^{2}+p_{14}^{2}-p_{24}^{2}=m_{1}^{2}-m_{2}^{2}+2\left(p_{1}, p_{2}+p_{3}\right)+p_{1}^{2}, \\
& f=m_{4}^{2}-i \varepsilon . \tag{6.4}
\end{align*}
$$

An intermediate equation will be useful for later use. From (6.2), with $x=u_{4}, y=$ u_{3} and $z=u_{1}$, one has
$\frac{D}{i \pi^{2}}=\int_{0}^{1} \mathrm{~d} x \int_{0}^{1-x} \mathrm{~d} y \int_{0}^{1-x-y} \mathrm{~d} z\left[(a+b+c) x^{2}+b y^{2}+g z^{2}+(2 b+c) x y-(h+j) x z\right.$

- Box scalar 1-loop integral from classic 't Hooft and Veltman paper
- Much has changed since the old days...
- Automation (you know better than me)
- New methods (Mellin Barnes, unitarity-based, differential equations, sector decomposition)
- Divide and conquer approach: exploit "algebraic redundancies" and reduce the number of integrals to be computed

Differential equations for Master Integrals [Kotitov 91; Remiddi ir]

Integration by parts identities

Loop integrals in d dimensions satisfy linear identities (IBPs + other). E.g.

$$
\begin{aligned}
\int \frac{d^{d} k}{\left(k^{2}-m^{2}\right)^{2}\left[(k-p)^{2}-m^{2}\right]} & \equiv \int \frac{d^{d} k}{D_{1}^{2} D_{2}} \\
& =\frac{d-3}{\left(p^{2}-4 m^{2}\right)} \int \frac{d^{d} k}{D_{1} D_{2}}-\frac{d-2}{2 m^{2}\left(p^{2}-4 m^{2}\right)} \int \frac{d^{d} k}{D_{1}}
\end{aligned}
$$

Only a finite number of them are independent (hence MIs)! ©

- Public codes for IBP generation and solution: AIR [Anastasiou, Lazopoulos 04], FIRE [Smirnov 08], REDUZE [Studerus 10; + von Manteuffel 12], LiteRed [Lee 12]
- Take derivatives wrt external $p_{i j}^{2}$'s and m_{i}^{2} 's \rightarrow use IBPs \rightarrow obtain system of linear differential equations for the MIs (ODEs or PDEs)
$\mathbf{F} \equiv$ vector of MIs $\mathbb{K} \equiv$ coeff. matrix

$$
d \mathbf{F}(\vec{x}, \epsilon)=\mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon) \quad \epsilon=(4-d) / 2
$$

How it looks like for $\gamma^{*} \rightarrow 3 j$ [Genrmann, Remididi 9$]$

$$
\begin{align*}
& s_{12} \frac{\partial}{\partial s_{12}} \begin{array}{l}
\vec{q} \\
p_{1}
\end{array}|\quad| \begin{array}{ll}
\overrightarrow{p_{2}} \\
p_{3}
\end{array}=-\frac{d-4}{2} \quad \vec{q}+\quad \xrightarrow{p_{1}}|\quad| \begin{array}{l}
p_{2} \\
p_{3} \\
\hline
\end{array} \\
& +\frac{2(d-3)}{s_{12}+s_{13}}\left[\frac{1}{s_{123}} \xrightarrow{p_{123}} \square-\frac{1}{s_{23}} \xrightarrow{p_{23}} \square-\right] \\
& +\frac{2(d-3)}{s_{12}+s_{23}}\left[\frac{1}{s_{123}} \xrightarrow{p_{123}} \longrightarrow-\frac{1}{s_{13}} \xrightarrow{p_{13}} \square-\right], \tag{4.9}\\
& s_{13} \frac{\partial}{\partial s_{13}} \begin{array}{l}
\vec{q} \\
p_{1}
\end{array}|\quad| \begin{array}{ll}
p_{2} \\
p_{3}
\end{array}=\frac{d-6}{2} \quad \vec{q}+\quad \xrightarrow{p_{1}}|\quad| \begin{array}{l}
p_{2} \\
p_{3} \\
\hline
\end{array} \\
& -\frac{2(d-3)}{s_{12}+s_{13}}\left[\frac{1}{s_{123}} \xrightarrow{p_{123}}--\frac{1}{s_{23}} \xrightarrow{p_{23}} \square-\right. \tag{4.10}\\
& s_{23} \frac{\partial}{\partial s_{23}} \begin{array}{l}
\vec{q} \\
p_{1}
\end{array}|\quad| \begin{array}{ll}
\overrightarrow{p_{2}} \\
p_{3}
\end{array}=\frac{d-6}{2} \quad \vec{q}+\quad \xrightarrow{p_{1}}|\quad| \begin{array}{l}
\overrightarrow{p_{2}} \\
p_{3} \\
\end{array} \\
& -\frac{2(d-3)}{s_{12}+s_{23}}\left[\frac{1}{s_{123}} \xrightarrow{p_{123}} \square-\frac{1}{s_{13}} \xrightarrow{p_{13}} \square-\right], \tag{4.11}
\end{align*}
$$

+ other equations for the bubbles, not involving the boxes \Rightarrow hierarchical structure

Canonical DEs systems and iterated integrals

A smart change of the MIs basis can bring to big simplifications [Henn 13]

$$
\text { old basis } \leftarrow \mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon) \rightarrow \text { new basis }
$$

bad basis ©

$$
d \mathbf{F}(\vec{x}, \epsilon)=\mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon)
$$

good basis $)^{-}$

$$
d \mathbf{l}(\vec{x}, \epsilon)=\epsilon \boldsymbol{d} \mathbb{A}(\vec{x}) \mathbf{I}(\vec{x}, \epsilon)
$$

Solution order by order in ϵ
remember Dyson's series, $i d U\left(t, t_{0}\right)=\epsilon V(t) U\left(t, t_{0}\right) d t$?

$$
\begin{aligned}
& \mathbf{I}(\epsilon, \vec{x})=\mathcal{P} \exp \left\{\epsilon \int_{\gamma} d \mathbb{A}\right\} \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \quad \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \equiv \begin{array}{l}
\text { boundary constants } \\
\text { e.g. value at } x_{0}=0 \text { etc }
\end{array} \\
& \mathcal{P} \exp \left\{\epsilon \int_{\gamma} d \mathbb{A}\right\}=\mathbb{1}+\epsilon \int_{\gamma} d \mathbb{A}+\epsilon^{2} \int_{\gamma} d \mathbb{A} d \mathbb{A}+\epsilon^{3} \int_{\gamma} d \mathbb{A} d \mathbb{A} d \mathbb{A}+\ldots
\end{aligned}
$$

Canonical DEs systems and iterated integrals

A smart change of the MIs basis can bring to big simplifications [Henn 13]

$$
\text { old basis } \leftarrow \mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon) \rightarrow \text { new basis }
$$

bad basis ©

$$
d \mathbf{F}(\vec{x}, \epsilon)=\mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon) \quad d \mathbf{l}(\vec{x}, \epsilon)=\epsilon \boldsymbol{d} \mathbb{A}(\vec{x}) \mathbf{I}(\vec{x}, \epsilon)
$$

Solution order by order in ϵ

remember Dyson's series, $i d U\left(t, t_{0}\right)=\epsilon V(t) U\left(t, t_{0}\right) d t$?

$$
\mathbf{I}(\epsilon, \vec{x})=\mathcal{P} \exp \left\{\epsilon \int_{\gamma} d \mathbb{A}\right\} \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \quad \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \equiv \begin{aligned}
& \text { boundary constants } \\
& \text { e.g. value at } s=0 \text { etc }
\end{aligned}
$$

γ is any path from \vec{x}_{0} to \vec{x} (that does not cross branch cuts and singularities of the integrand). \mathcal{P} is like \mathcal{T}-ordering, but in more dimensions!

Canonical DEs systems and iterated integrals

A smart change of the MIs basis can bring to big simplifications [Henn 13]

$$
\text { old basis } \leftarrow \mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon) \rightarrow \text { new basis }
$$

bad basis $)^{(2)}$

$$
d \mathbf{F}(\vec{x}, \epsilon)=\mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon) \quad d \mathbf{l}(\vec{x}, \epsilon)=\epsilon d \mathbb{A}(\vec{x}) \mathbf{I}(\vec{x}, \epsilon)
$$

It follows from Chen's theorem

...that the matrices

$$
\int_{\gamma} \underbrace{d \mathbb{A} \ldots d \mathbb{A}}_{\mathrm{k} \text { times }}
$$

are invariant under smooth deformations of the path γ (provided branch cuts and singularities are avoided)! A lot of freedom ©

Canonical DEs systems and iterated integrals

A smart change of the MIs basis can bring to big simplifications [Henn 13]

$$
\text { old basis } \leftarrow \mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon) \rightarrow \text { new basis }
$$

bad basis (2)
$d \mathbf{F}(\vec{x}, \epsilon)=\mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon)$
bad basis ©

Achieving a "canonical" basis

No general algorithm devised yet, mathematical status of a "conjecture". Some ideas and special cases (constant leading singularity, ϵ-linear DEs, triangular DEs for $\epsilon \rightarrow 0$, Moser algorithm, ...) (Henn 13; Argeri et al. 14; Bern et al. 14; Lee 14; Höschele et al. 14; Gehrmann et al. 14; Tancredi 15]

How it looks like

How it looks like

How it looks like

How it looks like

How it looks like

How it looks like

HOW It IOOKS IIKe e.g. Higgs + 1Jet 3-loop ladder [Mastrolia, Schubert, Yundin, DV 14]

How it looks like

Chen's iterated integrals [Cher 7]

For DY, the "canonical" coefficient matrix is a dlog form
$d \mathbb{A}=\sum_{i=1}^{n} \mathbb{M}_{i} d \log \eta_{i}(\vec{x})$ where $\left\{\begin{array}{l}\text { the } \mathbb{M}_{i} \text { are matrices of numbers } \\ \text { the "letters" } \eta_{i} \text { are functions of } \vec{x}\end{array}\right.$
Therefore the entries of

$$
\int_{\gamma} \underbrace{d \mathbb{A} \ldots d \mathbb{A}}_{\mathrm{k} \text { times }}
$$

are linear combinations of Chen's iterated integrals of the form

$$
\underset{\equiv \mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}}{\int_{\gamma} d \log \eta_{i_{k}} \ldots d \log \eta_{i_{1}}} \equiv \int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} g_{i_{k}}^{\gamma}\left(t_{k}\right) \ldots g_{i_{1}}^{\gamma}\left(t_{1}\right) d t_{1} \ldots d t_{k}
$$

where, given a parametrization $\gamma(t), t \in[0,1], g_{i}^{\gamma}(t)=\frac{d}{d t} \log \eta_{i}(\gamma(t))$

Chen's iterated integrals (chen 7T)

For DY, the "canonical" coefficient matrix is a dlog form
$d \mathbb{A}=\sum_{i=1}^{n} \mathbb{M}_{i} d \log \eta_{i}(\vec{x})$
where $\left\{\begin{array}{l}\text { the } \mathbb{M}_{i} \text { are matrices of numbers } \\ \text { the "letters" } \eta_{i} \text { are functions of } \vec{x}\end{array}\right.$
Therefore the entries of

$$
\int_{\gamma} \underbrace{d \mathbb{A} \ldots d \mathbb{A}}_{\mathrm{k} \text { times }}
$$

are linear combinations of Chen's iterated integrals of the form

Recall GPLs

$$
G_{i_{k}, \ldots, i_{1}}(1) \equiv \int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} \frac{1}{t_{k}-i_{k}} \cdots \frac{1}{t_{1}-i_{1}} d t_{1} \ldots d t_{k}
$$

where, given a parametrization $\gamma(t), t \in[0,1], g_{i}^{\gamma}(t)=\frac{d}{d t} \log \eta_{i}(\gamma(t))$

Possibly more familiar ...

Path integral representation for complex functions

$$
\begin{aligned}
\log (z) & \equiv \int_{\gamma} \frac{d \zeta}{\zeta} \\
\operatorname{Li}(z) & \equiv-\int_{\gamma} \frac{\log (1-\zeta)}{\zeta} d \zeta
\end{aligned}
$$

where γ is a path in the complex plane that starts at some z_{0} and ends at z and does not cross

- the point $\zeta=0$ for the first integral
- the point $\zeta=0$ and the branch cut for $\zeta>1$ for the second integral

Chen integrals generalize GPLs, which in turn generalize the classical polylogarithms. Public codes are available for GPL evaluation, including their analytic continuation, e.g. GiNac.

Chen's integral are more general, automation and optimization is harder.

Chen's iterated integrals: properties basallys smeses for copls

- Invariance under path reparametrization
- Reverse path formula: $\mathcal{C}_{i_{k}, \ldots, i_{1}}^{\left[\gamma^{-1}\right]}=(-1)^{k} \mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}$
- Recursive structure: $\left(\gamma^{s}(t) \equiv \gamma(s t)\right.$, with $\left.s \in[0,1]\right)$

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}=\int_{0}^{1} g_{i_{k}}^{\gamma}(s) \mathcal{C}_{i_{k-1}, \ldots, i_{1}}^{\left[\gamma_{s}\right]} d s \quad \frac{d}{d s} \mathcal{C}_{i_{k}, \ldots, i_{1}}^{\left[\gamma_{s}\right]}=g_{i_{k}}^{\gamma}(s) \mathcal{C}_{i_{k-1}, \ldots, i_{1}}^{\left[\gamma_{s}\right]}
$$

- Shuffle algebra:

$$
\mathcal{C}_{\vec{m}}^{[\gamma]} \mathcal{C}_{\vec{n}}^{[\gamma]}=\sum_{\text {shuffles } \sigma} \mathcal{C}_{\sigma\left(m_{M}\right), \ldots, \sigma\left(m_{1}\right), \sigma\left(n_{N}\right), \ldots, \sigma\left(n_{1}\right)}^{[\gamma]}
$$

- Path composition formula: if $\gamma \equiv \alpha \beta$, i.e. first α, then β

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\alpha \beta]}=\sum_{p=0}^{k} \mathcal{C}_{i_{k}, \ldots, i_{p+1}}^{[\beta]} \mathcal{C}_{i_{p}, \ldots, i_{1}}^{[\alpha]}
$$

- Integration-by-parts formula: get rid of outermost integration

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}=\log \eta_{i_{k}}(\vec{x}) \mathcal{C}_{i_{k-1}, \ldots, i_{1}}^{[\gamma]}-\int_{0}^{1} \log \eta_{i_{k}}(\vec{x}(t)) g_{i_{k-1}}(t) \mathcal{C}_{i_{k-2}, \ldots, i_{1}}^{[\gamma t]} d t
$$

Connection with GPLs in special cases

A representation in terms of GPLs can be obtained if the η_{i} 's are multilinear in \vec{x}. E.g. single letter $\eta=1+x y$. Choose $\gamma=\alpha \beta$ with

$$
\begin{aligned}
& \alpha(t)=\left(x_{0}+t\left(x_{1}-x_{0}\right), y_{0}\right), \\
& \beta(t)=\left(x_{1}, y_{0}+t\left(y_{1}-y_{0}\right)\right),
\end{aligned}
$$

and $t \in[0,1]$. Then

$$
\begin{aligned}
\int_{\alpha \beta} d \log (1+x y)= & \int_{\alpha} d \log (1+x y)+\int_{\beta} d \log (1+x y) \\
= & G\left(\frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{1}\right)} ; 1\right)+G\left(\frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)} ; 1\right) \\
\int_{\alpha \beta} d \log (1+x y) d \log (1+x y)= & \int_{\alpha} d \log (1+x y) d \log (1+x y)+\int_{\alpha} d \log (1+x y) \times \\
& \times \int_{\beta} d \log (1+x y)+\int_{\beta} d \log (1+x y) d \log (1+x y) \\
= & G\left(\frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{1}\right)}, \frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{0}\right)} ; 1\right)+G\left(\frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)}, \frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{1}\right)} ; 1\right) \\
& +G\left(\frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)}, \frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)} ; 1\right)
\end{aligned}
$$

(1) start with DE linear in ϵ (may need a bit of trial and error + expertise)

$$
\partial_{x} \mathbf{F}(\epsilon, x)=A(\epsilon, x) \mathbf{F}(\epsilon, x), \quad A(\epsilon, x)=A_{0}(x)+\epsilon A_{1}(x)
$$

(2) basis change with Magnus's exponential: $\mathbf{F}(\epsilon, x)=B_{0}(x) \mathbf{I}(\epsilon, x)$

$$
B_{0}(x) \equiv e^{\Omega\left[A_{0}\right]\left(x, x_{0}\right)} \quad \leftrightarrow \quad \partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x)
$$

(3) obtain a canonical system for the I's

$$
\partial_{x} \mathbf{I}(\epsilon, x)=\epsilon \hat{A}_{1}(x) \mathbf{l}(\epsilon, x), \quad \hat{A}_{1}(x)=B_{0}^{-1}(x) A_{1}(x) B_{0}(x)
$$

(1) obtain the solution with Magnus (or Dyson)

$$
\mathbf{I}(\epsilon, x)=B_{1}(\epsilon, x) g_{0}(\epsilon), \quad B_{1}(\epsilon, x)=e^{\Omega\left[\epsilon \hat{A}_{1}\right]\left(x, x_{0}\right)}
$$

(3) ϵ-expansion of g 's will have uniform weight ("transcendentality") (if $\mathbf{I}(0)$'s are chosen wisely)

In two (or more!) dimensions [Mastrolia, Scrubert, Yundin, DV 14$]$

- the F's obey an ϵ-linear DE system $\left(x=\frac{s}{m^{2}}, y=\frac{t}{m^{2}}\right)$

$$
\begin{aligned}
& \partial_{x} \mathbf{F}(x, y, \epsilon)=\left(A_{1,0}(x, y)+\epsilon A_{1,1}(x, y)\right) \mathbf{F}(x, y, \epsilon) \\
& \partial_{y} \mathbf{F}(x, y, \epsilon)=\left(A_{2,0}(x, y)+\epsilon A_{2,1}(x, y)\right) \mathbf{F}(x, y, \epsilon)
\end{aligned}
$$

- After getting rid of $A_{i, 0}$'s with Magnus (one variable at the time), the g's obey a canonical DE

$$
\begin{aligned}
& \partial_{x} \mathbf{I}(x, y, \epsilon)=\epsilon \hat{A}_{x}(x, y) \mathbf{l}(x, y, \epsilon) \\
& \partial_{y} \mathbf{I}(x, y, \epsilon)=\epsilon \hat{A}_{y}(x, y) \mathbf{l}(x, y, \epsilon)
\end{aligned}
$$

- which can be cast in dlog form

$$
d \mathbf{l}(x, y, \epsilon)=\epsilon d \mathbb{A}(x, y) \mathbf{l}(x, y, \epsilon)
$$

- with some alphabet $\left\{\eta_{1}, \ldots, \eta_{n}\right\} \Rightarrow$ Path-ordered exponential

One-mass DY MIs: 1-loop

$\left(\mathcal{T}_{1}\right)$

$$
\begin{array}{ll}
\mathrm{F}_{1}=\epsilon \mathcal{T}_{1}, & \mathrm{~F}_{2}=\epsilon \mathcal{T}_{2} \\
\mathrm{~F}_{4}=\epsilon^{2} \mathcal{T}_{4}, & \mathrm{~F}_{5}=\epsilon^{2} \mathcal{T}_{5}
\end{array}
$$

$\left(\mathcal{T}_{3}\right)$

$\left(\mathcal{T}_{4}\right)$

(\mathcal{T}_{5})

$$
F_{3}=\epsilon \mathcal{T}_{3}
$$

The vector \mathbf{F} obeys an ϵ-linear DE: we obtain the canonical MIs with the Magnus procedure

$$
\begin{array}{lll}
\mathrm{I}_{1}=\mathrm{F}_{1}, & \mathrm{I}_{2}=-s \mathrm{~F}_{2}, & \mathrm{I}_{3}=-t \mathrm{~F}_{3}, \\
\mathrm{I}_{4}=-t \mathrm{~F}_{4}, & \mathrm{I}_{5}=\left(s-m^{2}\right) t \mathrm{~F}_{5} &
\end{array}
$$

The alphabet of the corresponding dlog-form is $\left(x \equiv-s / m^{2}, y \equiv-s / m^{2}\right)$

$$
\eta_{1}=x, \quad \eta_{2}=1+x, \quad \eta_{3}=y, \quad \eta_{4}=1-y, \quad \eta_{5}=x+y
$$

One-mass DY Mls: 2-loop

- 1 extra letter

$$
\eta_{6}=x+y+x y
$$

- alphabet multilinear in $x, y \Rightarrow$ GPLs
- boundary conditions
- regularity at pseudo-thresholds
- zero momentum limits
- direct integration
- analytic continuation straightforward \Rightarrow complex (s, t, m^{2})
- Checked against SecDec

${ }^{\left(\mathcal{T}_{19}\right)}$

${ }_{\left(\mathcal{T}_{14}\right)}$

${ }_{\left(\mathcal{T}_{20}\right)}$

$\left(\tau_{26}\right)$
(\mathcal{T}_{9})

$\left(\mathcal{T}_{15}\right)$
${ }_{\left(\mathcal{T}_{21}\right)}$

${ }_{\left(\mathcal{T}_{4}\right)}$

${ }_{\left(\mathcal{T}_{10}\right)}$

$\left(\mathcal{T}_{16}\right)$

${ }_{\left(\mathcal{T}_{22}\right)}$

${ }^{\left(\mathcal{T}_{11}\right)}$

$\left(\mathcal{T}_{17}\right)$

($\left.\mathcal{T}_{23}\right)$

${ }^{\left(\mathcal{T}_{6}\right)}$

$\left(\mathcal{T}_{12}\right)$

${ }_{\left(\mathcal{T}_{18}\right)}$

${ }_{\left(\mathcal{T}_{24}\right)}$

(\mathcal{T}_{28})

${ }^{\left(\mathcal{T}_{29}\right)}$ (Euclidean and in the physical regions)

Two-mass DY MIs: 1-loop

 ${ }^{\left(\mathcal{T}_{1}\right)}$

${ }^{\left(\mathcal{T}_{2}\right)}$

$\left(\mathcal{T}_{3}\right)$

${ }_{\left(\mathcal{T}_{4}\right)}$

(\mathcal{T}_{5})

${ }^{\left(\mathcal{T}_{6}\right)}$
$\mathrm{F}_{1}=\epsilon \mathcal{T}_{1}$,
$\mathrm{F}_{2}=\epsilon \mathcal{T}_{2}$,
$\mathrm{F}_{3}=\epsilon \mathcal{T}_{3}$,
$\mathrm{F}_{4}=\epsilon^{2} \mathcal{T}_{4}$,
$\mathrm{F}_{5}=\epsilon^{2} \mathcal{T}_{5}$,
$\mathrm{F}_{6}=\epsilon^{2} \mathcal{T}_{6}$

Canonical basis

$$
\begin{array}{ll}
\mathrm{I}_{1}=\mathrm{F}_{1}, & \mathrm{I}_{2}=-s \sqrt{1-\frac{4 m^{2}}{s}} \mathrm{~F}_{2}, \\
\mathrm{I}_{3}=-t \mathrm{~F}_{3} \\
\mathrm{I}_{4}=-s \mathrm{~F}_{4}, \quad \mathrm{I}_{5}=-t \mathrm{~F}_{5}, & \mathrm{I}_{6}=s t \sqrt{1-4 \frac{m^{2}}{s}\left(1+\frac{m^{2}}{t}\right)} \mathrm{F}_{6}
\end{array}
$$

Two-mass DY MIs: 1-loop

${ }^{\left(\mathcal{T}_{1}\right)}$

$\left(\mathcal{T}_{2}\right)$

$\left(\mathcal{T}_{3}\right)$

${ }^{\left(\mathcal{T}_{4}\right)}$

$\left(\mathcal{T}_{5}\right)$

$\left(\mathcal{T}_{6}\right)$

Four square roots appear

$$
\sqrt{-s}, \sqrt{4 m^{2}-s}, \sqrt{-t}, \text { and } \sqrt{1-\frac{4 m^{2}}{s}\left(1+\frac{m^{2}}{t}\right)}
$$

A change of variables gets rid of them

$$
-\frac{s}{m^{2}}=\frac{(1-w)^{2}}{w}, \quad-\frac{t}{m^{2}}=\frac{w}{z} \frac{(1+z)^{2}}{(1+w)^{2}}
$$

$$
\begin{aligned}
& \eta_{1}=z, \\
& \eta_{2}=1+z, \\
& \eta_{3}=1-z, \quad \eta_{4}=w, \\
& \eta_{5}=1+w, \\
& \eta_{6}=1-w, \\
& \eta_{7}=z-w, \\
& \eta_{8}=z+w^{2},
\end{aligned}
$$

Two-mass DY MIs: 2-loop

- one extra sqrt $\sqrt{1+\frac{m^{4}}{t^{2}}-\frac{2 m^{2}}{s}\left(1-\frac{u}{t}\right)}$
- in DE for I_{32} at weight 3,4
- in DEs for $\mathrm{I}_{33, \ldots, 36}$ at weight 4
- all the rest \rightarrow GPLs
- boundary conditions
- regularity at pseudo-thresholds
- zero momentum limits
- direct integration
- analytic continuation
- straightforward for $I_{1, \ldots, 31}$
- requires care for $\mathrm{I}_{32, \ldots, 36}$
- checks against SecDec
- $I_{1, \ldots, 31}$ (Eucl./phys.)
- $I_{32, \ldots, 36}$ (Eucl.)

Mixed Chen-Goncharov representation for DY

Exploiting the recursive structure, the weight k coefficient of the MIs is

$$
\mathbf{I}^{(k)}(\vec{x})=\mathbf{l}^{(k)}\left(\vec{x}_{0}\right)+\int_{0}^{1}\left[\frac{d \mathbb{A}(t)}{d t} \mathbf{l}^{(k-1)}\left(\vec{x}_{t}\right)\right] d t
$$

where \vec{x}_{t} is the point $(x(t), y(t))$ along the curve identified by γ.

- Need weight- $(k-1)$ coefficient, which is independent of the path
(3) Rational alphabet \rightarrow factorize over $\mathbb{C} \rightarrow$ GPLs ${ }_{\text {GiNaC }}$
(:) In our case we have also square roots \rightarrow path integration over GPLs
- Exploit IBP to perform always only 1 numerical path integration

$$
\begin{aligned}
\mathcal{C}_{a|\vec{m}| \vec{n}}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) G_{\vec{m}}^{\gamma}(x) G_{\vec{n}}^{\gamma}(y) d t \\
\mathcal{C}_{a|\vec{m}| \varnothing}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) G_{\vec{m}}^{\gamma}(x) d t \\
\mathcal{C}_{a|\varnothing| \vec{n}}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) G_{\vec{n}}^{\gamma}(y) d t \\
\mathcal{C}_{a, \vec{b}|\vec{m}| \vec{n}}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) \mathcal{C}_{\vec{b}|\vec{m}| \vec{n}}^{[\gamma t]} d t
\end{aligned}
$$

where $G_{\vec{m}}^{\gamma}(x)$ and $G_{\vec{n}}^{\gamma}(y)$ stand for the GPLs $G_{\vec{m}}(x)$ and $G_{\vec{n}}(y)$ evaluated at $(x, y)=\left(\gamma^{1}(t), \gamma^{2}(t)\right)$.

Summary and perspectives

- We computed the MIs for the virtual QCD \times EW two-loop corrections to the Drell-Yan scattering processes (for massless external particles)

$$
q+\bar{q} \rightarrow I^{-}+I^{+}, \quad q+\bar{q}^{\prime} \rightarrow I^{-}+\bar{\nu}
$$

- We exploited $\Delta m^{2} \equiv m_{Z}^{2}-m_{W}^{2} \ll m_{Z}^{2}$ to reduce the number of scales to 3
- We identified 49 canonical MIs (8 fully massless, 24 one-mass, 17 two-mass) with the help of the Magnus exponential
- The result is given as a Taylor series around $d=4$ space-time dimensions in terms of iterated integrals up to weight four
- We adopted a mixed representation in terms of Chen-Goncharov iterated integrals, suitable for numerical evaluation.
- Future work:
- Analytic continuation of Chen's iterated integrals
- Optimization of numerical evaluation
- Amplitudes and cross-section
(canonical)

Thanks for your attention!

A convenient tool: the Magnus series expansion [Magnus 54]

- a generic matrix linear system of 1st order ODE

$$
\partial_{x} Y(x)=A(x) Y(x), \quad Y\left(x_{0}\right)=Y_{0}
$$

- in the general non-commutative case, the Magnus theorem tells us that

$$
Y(x)=e^{\Omega\left(x, x_{0}\right)} Y\left(x_{0}\right) \equiv e^{\Omega(x)} Y_{0}
$$

- with $\Omega(x)=\sum_{n=1}^{\infty} \Omega_{n}(x)$ and

$$
\begin{aligned}
& \Omega_{1}(x)=\int_{x_{0}}^{x} d \tau_{1} A\left(\tau_{1}\right), \\
& \Omega_{2}(x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A\left(\tau_{1}\right), A\left(\tau_{2}\right)\right] \\
& \Omega_{3}(x)=\frac{1}{6} \int_{x_{0}}^{t} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3}\left[A\left(\tau_{1}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{3}\right)\right]\right]+\left[A\left(\tau_{3}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{1}\right)\right]\right]
\end{aligned}
$$

Relation with Dyson series [Banes, cass. oreo and fos oof

Magnus \leftrightarrow Dyson series. Dyson expansion of the solution Y in terms of the time-ordered integrals Y_{n}

$$
\begin{aligned}
Y(x) & =Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x) \\
Y_{n}(x) & \equiv \int_{x_{0}}^{x} d \tau_{1} \cdots \int_{x_{0}}^{\tau_{n-1}} d \tau_{n} A\left(\tau_{1}\right) A\left(\tau_{2}\right) \cdots A\left(\tau_{n}\right)
\end{aligned}
$$

Then

$$
Y(x)=e^{\Omega(x)} Y_{0} \Rightarrow \sum_{j=1}^{\infty} \Omega_{j}(x)=\log \left(Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x)\right)
$$

and

$$
\begin{aligned}
& Y_{1}=\Omega_{1}, \\
& Y_{2}=\Omega_{2}+\frac{1}{2!} \Omega_{1}^{2}, \\
& Y_{3}=\Omega_{3}+\frac{1}{2!}\left(\Omega_{1} \Omega_{2}+\Omega_{2} \Omega_{1}\right)+\frac{1}{3!} \Omega_{1}^{3}
\end{aligned}
$$

[^0]: Balazs, Yuan 97; Bozzi, Catani, De Florian, Ferrera, Grazzini 10; Alioli, Nason, Oleari, Re 08; Karlberg, Re,
 Zanderighi 14; Hoeche, Li, Prestel 14; Alioli, Bauer, Berggren, Tackmann, Walsh 15; ...]

