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BNL-E821
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Error [20] [21] Future
�a

SM
µ 49 50 35

�a

HLO
µ 42 43 26

�a

HLbL
µ 26 26 25

�(aEXP
µ � a

SM
µ ) 80 80 40

Figure 9: Estimated uncertainties �aµ in units of 10�11 according to Refs. [20, 21] and (last
column) prospects for improved precision in the e+e� hadronic cross-section measurements.
The final row projects the uncertainty on the di↵erence with the Standard Model, �aµ. The
figure give the comparison between a

SM
µ and a

EXP
µ . DHMZ is Ref. [20], HLMNT is Ref. [21];

“SMXX” is the same central value with a reduced error as expected by the improvement
on the hadronic cross section measurement (see text); “BNL-E821 04 ave.” is the current
experimental value of aµ; “New (g-2) exp.” is the same central value with a fourfold improved
precision as planned by the future (g-2) experiments at Fermilab and J-PARC.
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SM Exp.

Standard-model theory 
disagrees with the results of g-2 
of the muon experiment BNL 
E821 by several σ. 

Could be experimental or 
theoretical error, or it could be 
new physics.
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➜ Move to Fermilab; continue with more muons.

3

The magnet moves up the Mississippi

The magnet arrives at Fermilab
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Muon g-2 in the Standard Model
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Contribution Result (�1011) Error
QED (leptons) 116 584 718 ± 0.14 ± 0.04� 0.00 ppm
HVP(lo) [1] 6 923 ± 42 0.36 ppm
HVP(ho) -98 ± 0.9exp ± 0.3rad 0.01 ppm
HLbL [2] 105 ± 26 0.22 ppm
EW 154 ± 2 ± 1 0.02 ppm
Total SM 116 591 802 ± 49 0.42 ppm

+

QED (4 loops) & EW (2 loops)

µ
µ µ µ

+ +

Hadronic vacuum 
polarization (HVP):  

 
 
 
 
 

from experimental result 
for e+e-→ hadrons plus 

dispersion relation

µ µ
+ ...

Hadronic light-by-
light (HLbL):  

 
 
 
 

estimated from 
models such as large 

Nc, vector meson 
dominance, χPT, 

etc...

µ µ

Thanks Ruth Van de Water for 
this and several other slides.

http://inspirebeta.net/author/Davier%2C%20Michel?recid=873506&ln=en
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Experimental goals and lattice goals
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Contribution Result (�1011) Error
QED (leptons) 116 584 718 ± 0.14 ± 0.04� 0.00 ppm
HVP(lo) [1] 6 923 ± 42 0.36 ppm
HVP(ho) -98 ± 0.9exp ± 0.3rad 0.01 ppm
HLbL [2] 105 ± 26 0.22 ppm
EW 154 ± 2 ± 1 0.02 ppm
Total SM 116 591 802 ± 49 0.42 ppm

+
µ

µ µ µ
+ +

Hadronic vacuum 
polarization (HVP):  

 
 
 
 
 

µ µ
+ ...

Hadronic light-by-
light (HLbL):  

 
 
 
 

µ µ

Uncertainties in 
hadronic 
corrections must be 
brought down to 
this level to fully 
capitalize on the 
experiment.

0.14 ppm.Uncertainty goal of Fermilab g-2 experiment:
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State of lattice QCD

6

ρ K K∗ η φ N Λ Σ Ξ ∆ Σ
∗

Ξ
∗ Ωπ η′ ω0

500

1000

1500

2000

2500

(M
eV

)

D, B D
*, B

*

D s
,B s D s

* ,B s
*

Bc Bc
*

© 2012−2014 Andreas Kronfeld/Fermi Natl Accelerator Lab.

B mesons offset by −4000 MeV

For the last fifteen years, lattice calculations have been able to calculate the 
properties of sufficiently simple quantities with good understanding of the 
calculational uncertainties.

Kronfeld
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FIG. 23: Unquenched lattice results for f
D

and f
Ds [26, 49, 50, 61, 68–74]. We do not include

Ref. [75] because of the small volume used, and Ref. [76] because of the lack of a continuum

extrapolation. Results are grouped by the number of flavors from top to bottom: n
f

= 2 (green

diamonds), n
f

= 2+1 (blue circles), and n
f

= 2+1+1 (purple squares). Within each grouping, the

results are in chronological order. Our new results are denoted by magenta pluses and displayed

at the bottom. Again, we do not distinguish results in the isospin symmetric limit from those with

non-degenerate up and down quarks, where we have estimated the di↵erence in Eq. 35.

Taking |V
ud

| from nuclear � decay [79], we also obtain

|V
us

| = 0.22487(51)LQCD(29)BR(K`2)(20)EM(5)
Vud

. (40)

This result for |V
us

| is more precise than our recent determination from a calculation of the

kaon semileptonic form factor on the physical-mass HISQ ensembles [80], and larger by 1.8�.

Figure 25 shows the unitarity test of the first row of the CKM matrix using our result for

f

K

+
/f

⇡

+ . We find good agreement with CKM unitarity, and obtain a value for the sum of

squares of elements of the first row of the CKM matrix consistent with the Standard-Model

prediction zero at the level of 10�3:

1 � |V
ud

|2 � |V
us

|2 � |V
ub

|2 = 0.00026(51) . (41)

Thus our result places stringent constraints on new-physics scenarios that would lead to

deviations from first-row CKM unitarity. Finally, we note that, now that the uncertainty

62
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Abstract

We compute the leptonic decay constants f
D

+ , f
Ds , and f

K

+ , and the quark-mass ratios m
c

/m
s

and m
s

/m
l

in unquenched lattice QCD using the experimentally determined value of f
⇡

+ for

normalization. We use the MILC highly improved staggered quark (HISQ) ensembles with four

dynamical quark flavors—up, down, strange, and charm—and with both physical and unphysical

values of the light sea-quark masses. The use of physical pions removes the need for a chiral ex-

trapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four

di↵erent lattice spacings ranging from a ⇡ 0.06 fm to 0.15 fm are included in the analysis to control

the extrapolation to the continuum limit. Our primary results are f
D

+ = 212.6(0.4)(+1.0
�1.2) MeV,

f
Ds = 249.0(0.3)(+1.1

�1.5) MeV, and f
Ds/f

D

+ = 1.1712(10)(+29
�32), where the errors are statistical and

total systematic, respectively. The errors on our results for the charm decay constants and their

ratio are approximately two to four times smaller than those of the most precise previous lat-

tice calculations. We also obtain f
K

+/f
⇡

+ = 1.1956(10)(+26
�18), updating our previous result, and

determine the quark-mass ratios m
s

/m
l

= 27.35(5)(+10
�7 ) and m

c

/m
s

= 11.747(19)(+59
�43). When

combined with experimental measurements of the decay rates, our results lead to precise determi-

nations of the CKM matrix elements |V
us

| = 0.22487(51)(29)(20)(5), |V
cd

| = 0.217(1)(5)(1) and

|V
cs

| = 1.010(5)(18)(6), where the errors are from this calculation of the decay constants, the un-

certainty in the experimental decay rates, structure-dependent electromagnetic corrections, and,

in the case of |V
us

|, the uncertainty in |V
ud

|, respectively.

PACS numbers: 12.38.Gc,14.20.Dh

⇤Present address: Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
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We’re looking for 0.2% precision in 
muonic HVP. 
That’s more ambitious than we usually 
achieve so far, but some interesting 
quantities are sub-1% already.

0.5%

0.5%

0.3%

State of lattice QCD
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What is “simple”?

• Simplest:  stable mesons. 

• Over the last ten years, many key quantities.  Hadronically stable 
mesons, especially: 

• Heavy and light meson decay constants, 

• Semileptonic decays, 

• Meson-antimeson mixing. 

• Make possible important determinations of 8 CKM matrix elements, 
5 quark masses, the strong coupling constant. 

• Now:  ππ systems, nucleons.

8
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Coming US experimental program

• Next five years:  lattice calculations are needed throughout the 
entire future US experimental program. 

• g-2. 

• LHCb, Belle-2:  continued improvement of CKM results. 

• mu2e, LBNE, Nova:  nucleon matrix elements. 

• Underground LBNE:  proton decay matrix elements. 

• LHC, Higgs decays:  lattice provides the most accurate αs and mc 
now, and mb in the future.

9
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How?

10

⌦
 �5 (t = 0) |  �5 (t)

↵
= C exp(�Mt) + excited states.

1

If the two quarks were a u and a u, the slope would give Mπ, C would be proportional to Fπ2.
_

Excited states

Ground state
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Vacuum polarization:  general setup. 91 (2003) 052001]

• Calculate aµHVP directly in from the Euclidean space vacuum 
polarization function: 
 
 
 
 
 
 
 
 
 

• Π(q2) is a simple correlation 
function of two electromagnetic 
currents. 

• In Euclidean space, Π(q2) has 
a smooth q2 dependence with 
no resonance structure.

11

Dru Renner

aHVP(LO)
µ =

⇣↵

⇡

⌘2
Z 1

0
dQ2f(Q2)

⇥
⇧(Q2)�⇧(0)

⇤

qµ q⌫

i⇧µ⌫(q2) =
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HVP from e+e-→hadrons
• Standard-Model value for aµHVP obtained from experimental 

measurement of 
σtotal(e+e-→hadrons) via optical theorem: 
 
 
 

• (Away from quark thresholds., use four-loop pQCD.) 

• Includes >20 multi-particle 
channels with up to six 
final-state hadrons. 

• Multi-hadron channels 
represent a small 
absolute contribution 
to aµHVP, but contribute  
a significant fraction of 
the total uncertainty. 

12

aHVP
µ =

⇣↵mµ

3⇡

⌘2
Z 1

m2
⇡0

ds
R(s)K(s)

s2
R ⌘ �total(e+e� ! hadrons)

�(e+e� ! µ+µ�)

[Jegerlehner and Nyffeler, Phys.Rept. 477 (2009) 1-110]
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Notable lattice work on vacuum polarization

• Blum, Phys. Rev. Lett. 91 (2003) 052001.  Blum’s formula. 

• Aubin & Blum, Phys. Rev. D75 (2007) 114502. 

• Feng et al., Phys. Rev. Lett. 107 (2011) 081802 . 

• Hotzel et al., Lattice 2013. 

• Boyle et al., Phys. Rev. D85 (2012) 074504. 

• Della Morte et al., JHEP 1203 (2012) 055.  Twisted BC. 

• Aubin et al., Phys. Rev. D86 (2012) 054509.  Pade approximants. 

• RBC/UKQCD, PRL116, 232002 (2016).  First disconnected 
diagrams. 

• HPQCD, 1601.03071; PR D89, 114501 (2014). Moments method.

13
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Hadronic vacuum polarization:  Blum’s formula

14

The four-dimensional integral yielding the hadronic vacuum 
polarization depends dynamically only on q2. 
The angular dependence of the kinematics factors may be 
integrated out with four-dimensional angular coordinates. 
Result: f is given by: 6

FIG. 1: f(Q2) Π̂I=1(Q2) versus Q2 in the low-Q2 region

0 0.05 0.1 0.15 0.2
Q2 [GeV2]

0

0.005

0.01

0.015

0.02

f(Q
2 ) Π̂

I=
1 (

Q
2 )

a function of the upper limit of integration, Q2
max. We display this accumulation,

normalized to the integral over all Q2, âLO,HVP
µ , in the model, in Fig. 2. We note

that over 80% of the contribution is accumulated below 0.1 GeV2 and over 90% below
0.2 GeV2. It follows that the accuracy required for contributions above 0.1 or 0.2 GeV2

is much less than that required for the low-Q2 region. It thus becomes of interest to
investigate the accuracy one might achieve for the higher-Q2 contributions were one to
avoid altogether fitting and/or modelling, and the associated systematic uncertainty
that accompanies it, and instead perform a direct numerical integration over the lattice
data. We investigate this question in the next subsection.

C. Direct numerical integration: how low can you go?

In this section, we argue that existing lattice data, even those without twisted bound-
ary conditions, are already sufficiently accurate that direct numerical integration of the
lattice data can be relied on to produce a value âLO,HVP

µ [Q2
min, 2 GeV2] accurate to well

below 1% of âLO,HVP
µ for Q2

min down to about 0.1 GeV2. The situation will be even
better once the results of new data with reduced errors on Π(Q2) due to all-mode av-

Golterman, Maltman, and Peris, PhysRevD. 90.074508, arXiv:1405.2389.

Combined support of dynamical and 
kinematical factors maxes around mµ2, 
as expected.

2

boundary conditions’ produces noisy results. E↵orts are
underway to improve both of these approaches [12, 13].
See also [14–16].

Here we sidestep this issue by expressing the g�2 HVP
contribution in terms of a small number of derivatives of
the hadronic vacuum polarization function evaluated at
q

2 = 0. In e↵ect, we work upwards from q

2 = 0 into
the region of important, but still very small, q2 values.
The advantage of this method is that the derivatives are
readily and accurately computed from time-moments of
the current-current correlator at zero spatial momentum.

We can approximate the hadronic vacuum polariza-
tion function by its Taylor expansion when q

2 is of or-
der m

2
µ

, but the series diverges when q is of order or
larger than the threshold energy for real hadron produc-
tion (2m

⇡

for u/d quarks). Contributions from high mo-
menta, say q � 1GeV, are suppressed by (m

µ

/q)2 but
remain important if one desires better than 1% precision.
To deal with high momenta, we replace the Taylor expan-
sion by its Padé approximants [17]. Successive orders of
Padé approximant converge to the exact vacuum polar-
ization function for all positive (Euclidean) q

2 [18, 19].
This follows from the dispersion relation for the vacuum
polarization [13]. As we will show, only a few orders
are needed to achieve 1% accuracy or better. The Padé
approximants capture the entire contribution for all q2,
through analytic continuation from low q

2 to high q

2, and
so, unlike in some other approaches to HVP, we need not
calculate high-q2 contributions using perturbation theory
(since this would constitute double-counting).

A further advantage of our approach is that it works
with both local lattice approximations to the vector cur-
rent, and exactly conserved but nonlocal approximations.
Local approximations are easy to code and less noisy
than nonlocal approximations, and so are widely used
in lattice simulations. The fact that they are not exactly
conserved leads to nonzero contributions to the vacuum
polarization function ⇧µ⌫(q2) at q

2 = 0, but such con-
tributions are discarded automatically when we express
g � 2 in terms of derivatives of ⇧µ⌫ .

In this paper we illustrate our method by applying
it to correlators made of s quarks, using well-tuned s

quark masses on gluon field configurations that include
up, down, strange and charm quarks in the sea. The sea
up and down quarks have physical values, so no chiral
extrapolation to the physical point is needed. We have
three values of the lattice spacing, allowing good control
of the extrapolation to zero lattice spacing. A study on
three di↵erent volumes at one value of the lattice spacing
allows us also to control finite volume e↵ects.

We also give a result for the much smaller charm
contribution, using moments determined previously by
us [20, 21] on configurations covering a large range of lat-
tice spacing values and including up, down and strange
quarks in the sea.

The next section gives details of the lattice calculation
and tests of our approach; we then discuss our results
and give our conclusions.

II. LATTICE CALCULATION

For the strange quark contribution to a

µ

we use the
Highly Improved Staggered Quark (HISQ) action [27] for
all quarks. This has small discretization errors [27–29]
and is numerically very fast. We calculate HISQ s quark
propagators on gluon field configurations generated by
the MILC collaboration that include u, d, s and c quarks
in the sea using the HISQ formalism [22, 23]. Details of
the ensembles are given in Table I. They range in lat-
tice spacing from 0.15 fm down to 0.09 fm with the spa-
tial length of the lattice as large as 5.6 fm on the finest
lattices. At each lattice spacing we have two values of
the average u/d quark mass: one fifth the s quark mass
and the physical value (m

s

/27.5 [30]). The tuning of the
valence masses is more critical than that of the sea, so
the valence and sea s masses di↵er slightly. We tune
the valence s mass accurately using the mass of the ⌘

s

,
a pseudoscalar pure ss meson which does not occur in
the real world. In lattice QCD, where the ⌘

s

can be
prevented from mixing with other mesons, its proper-
ties can be very accurately determined [31]. Its mass
(688.5(2.2)MeV [24]) is very sensitive to the s quark
mass, making it useful for tuning. At a third value of
the u/d quark mass, one tenth of the s quark mass, we
have three di↵erent volumes to test for finite volume ef-
fects. These are sets 4, 5 and 7 and correspond to a lattice
length in units of the ⇡ meson mass [24] of M

⇡

L = 3.2,
4.3 and 5.4. In addition we de-tuned the valence s quark
mass there by 5% (set 6) to test for tuning e↵ects.
The s quark propagators are combined into a correlator

with a local vector current at either end. The end point
is summed over spatial sites on a timeslice to set the spa-
tial momentum to zero. The source is created from a set
of U(1) random numbers over a timeslice for improved
statistics. The local current is not the conserved vector
current for this quark action and must be normalised. We
do this completely nonperturbatively by demanding that
the vector form factor for this current be 1 between two
equal mass mesons at rest (q2 = 0) [26]. The Z factors
are given in Table I. They di↵er from 1 by at most 1% (on
the 0.15 fm lattices) and vary from one lattice spacing to
another by less than 0.5%. We therefore only calculate
them for the m

l

/m

s

=0.2 ensembles at each lattice spac-
ing. At large time separations between source and sink
these correlators give the mass and decay constant of the
� meson [26]. Here we are concerned with the properties
of the correlation function at the shorter times that feed
into the theoretical determination of a

µ,HVP.
The contribution to the muon anomalous magnetic

moment from the HVP associated with a given quark
flavour, f, is obtained by inserting the quark vacuum po-
larization into the photon propagator [6]:

a

(f)
µ,HVP =

↵

⇡

Z 1

0

dq

2
f(q2)(4⇡↵Q2

f )⇧̂f(q
2) (1)

where ↵ ⌘ ↵QED and Qf is the electric charge of quark f
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TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621

in units of e. Here
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2m2
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2
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Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since

P
u,d,s

Qf = 0 [6].
The quark polarization tensor is the Fourier transform

of the vector current-current correlator. For spatial cur-
rents at zero spatial momentum

⇧ii(q2) = q

2⇧(q2) = a

4
X

t

e

iqt

X

~x

hji(~x, t)ji(0)i (4)

with q the Euclidean energy. We need the renormalized
vacuum polarization function, ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0).
Time-moments of the correlator give the derivatives at
q

2 = 0 of ⇧̂ [32] (see, for example, [33, 34]):
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4
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~x

t

2n
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2
V

hji(~x, t)ji(0)i

= (�1)n
@
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@q

2n
q

2⇧̂(q2)

����
q

2=0

. (5)

Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents1. G2n

1
The vector current need not be exactly conserved, provided that

is easily calculated from the correlators calculated in lat-
tice QCD, remembering that time runs from 0 at the
origin in both positive and negative directions to a max-
imum value of T/2 in the centre of the lattice.
Defining

⇧̂(q2) =
1X

j=1

q

2j⇧
j

(6)

then

⇧
j

= (�1)j+1 G2j+2

(2j + 2)!
. (7)

To evaluate the contribution to a

µ

we will replace ⇧̂(q2)
with its [n, n] and [n, n � 1] Padé approximants derived
from the ⇧

j

[17]. We perform the q2 integral numerically.
Eq. (5) is, of course, approximate when the the tem-

poral extent T of the lattice is finite. This error is ex-
ponentially suppressed, and usually negligible, because
G(t) falls to zero quickly with increasing |t| ( T/2) and
has e↵ectively vanished well before |t| gets to edge of the
lattice at T/2. At large |t| the correlator is dominated
by the lowest-energy vector state in the simulation—

G(t) ! a0

⇣
e�E0|t| + e�E0(T�|t|)

⌘
(8)

— so that terms containing T are suppressed by a factor
of exp(�E0T/2). Such terms become important for high
order moments, since t

n

G(t) peaks at t ⇡ n/E0 for large
n, but they are negligible for the moments of interest

it is renormalized correctly with ZV because: a) there are no

contributions from contact terms in the moments, and b) the

only lattice operators that can mix with the vector current have

higher dimension and so are suppressed by powers of a2
.
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TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am
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` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).
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val
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2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621
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Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since

P
u,d,s

Qf = 0 [6].
The quark polarization tensor is the Fourier transform

of the vector current-current correlator. For spatial cur-
rents at zero spatial momentum

⇧ii(q2) = q

2⇧(q2) = a

4
X

t

e

iqt

X

~x

hji(~x, t)ji(0)i (4)

with q the Euclidean energy. We need the renormalized
vacuum polarization function, ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0).
Time-moments of the correlator give the derivatives at
q

2 = 0 of ⇧̂ [32] (see, for example, [33, 34]):
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Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents1. G2n

1
The vector current need not be exactly conserved, provided that

is easily calculated from the correlators calculated in lat-
tice QCD, remembering that time runs from 0 at the
origin in both positive and negative directions to a max-
imum value of T/2 in the centre of the lattice.
Defining

⇧̂(q2) =
1X

j=1

q

2j⇧
j

(6)

then

⇧
j

= (�1)j+1 G2j+2

(2j + 2)!
. (7)

To evaluate the contribution to a

µ

we will replace ⇧̂(q2)
with its [n, n] and [n, n � 1] Padé approximants derived
from the ⇧

j

[17]. We perform the q2 integral numerically.
Eq. (5) is, of course, approximate when the the tem-

poral extent T of the lattice is finite. This error is ex-
ponentially suppressed, and usually negligible, because
G(t) falls to zero quickly with increasing |t| ( T/2) and
has e↵ectively vanished well before |t| gets to edge of the
lattice at T/2. At large |t| the correlator is dominated
by the lowest-energy vector state in the simulation—

G(t) ! a0

⇣
e�E0|t| + e�E0(T�|t|)

⌘
(8)

— so that terms containing T are suppressed by a factor
of exp(�E0T/2). Such terms become important for high
order moments, since t

n

G(t) peaks at t ⇡ n/E0 for large
n, but they are negligible for the moments of interest

it is renormalized correctly with ZV because: a) there are no

contributions from contact terms in the moments, and b) the

only lattice operators that can mix with the vector current have

higher dimension and so are suppressed by powers of a2
.
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TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621
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Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since

P
u,d,s

Qf = 0 [6].
The quark polarization tensor is the Fourier transform

of the vector current-current correlator. For spatial cur-
rents at zero spatial momentum

⇧ii(q2) = q

2⇧(q2) = a

4
X

t

e

iqt

X

~x

hji(~x, t)ji(0)i (4)

with q the Euclidean energy. We need the renormalized
vacuum polarization function, ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0).
Time-moments of the correlator give the derivatives at
q

2 = 0 of ⇧̂ [32] (see, for example, [33, 34]):
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Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents1. G2n

1
The vector current need not be exactly conserved, provided that

is easily calculated from the correlators calculated in lat-
tice QCD, remembering that time runs from 0 at the
origin in both positive and negative directions to a max-
imum value of T/2 in the centre of the lattice.
Defining

⇧̂(q2) =
1X

j=1

q

2j⇧
j

(6)

then

⇧
j

= (�1)j+1 G2j+2

(2j + 2)!
. (7)

To evaluate the contribution to a

µ

we will replace ⇧̂(q2)
with its [n, n] and [n, n � 1] Padé approximants derived
from the ⇧

j

[17]. We perform the q2 integral numerically.
Eq. (5) is, of course, approximate when the the tem-

poral extent T of the lattice is finite. This error is ex-
ponentially suppressed, and usually negligible, because
G(t) falls to zero quickly with increasing |t| ( T/2) and
has e↵ectively vanished well before |t| gets to edge of the
lattice at T/2. At large |t| the correlator is dominated
by the lowest-energy vector state in the simulation—

G(t) ! a0

⇣
e�E0|t| + e�E0(T�|t|)

⌘
(8)

— so that terms containing T are suppressed by a factor
of exp(�E0T/2). Such terms become important for high
order moments, since t

n

G(t) peaks at t ⇡ n/E0 for large
n, but they are negligible for the moments of interest

it is renormalized correctly with ZV because: a) there are no

contributions from contact terms in the moments, and b) the

only lattice operators that can mix with the vector current have

higher dimension and so are suppressed by powers of a2
.

T. Blum, Phys. Rev. Lett. 91, 052001 (2003), hep-lat/0212018. 
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Algorithmic improvements
Twisted boundary conditions [Della Morte et 
al., JHEP 1203 (2012) 055]. 

• Because of finite spatial lattice size (volume=L3), 
simulations with periodic boundary conditions 
can only access discrete momentum values in 
units of (2π/L) [red points]. 

➡ Lattice data sparse and noisy in low-q2  

region where contribution to aµHVP is largest. 
• Introduce twisted B.C. for fermion fields to 

access momenta below (2π/L) [blue points]. 

•Padé approximants [Aubin et al.,Phys.Rev. D86 
(2012) 054509]. 

• Even with twisted B.C., contributions to aµHVP from 
Π(q2) for momenta below the range directly accessible 
in current lattice simulations are significant. 

• Must assume functional form for q2 
dependence and extrapolate q2→0. 

• Use model-independent fitting approach based on 
analytic structure of Π(q2) to eliminate systematic 
associated with vector-meson dominance fits. 
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Thanks Ruth Van de Water for 
this and several other slides.
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Algorithmic improvements: the moments method

16

HPQCD, 1601.03071, PRD89, 114501 (2014)

Subtractions required in the renormalized vacuum polarization function, 
yield numerically unstable expressions. 
New approach: use spatial moments of the current-current correlates — 
can be obtained in terms of the derivatives in q2, no subtractions necessary.
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TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621
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Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since

P
u,d,s

Qf = 0 [6].
The quark polarization tensor is the Fourier transform

of the vector current-current correlator. For spatial cur-
rents at zero spatial momentum

⇧ii(q2) = q

2⇧(q2) = a

4
X

t

e

iqt

X

~x
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with q the Euclidean energy. We need the renormalized
vacuum polarization function, ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0).
Time-moments of the correlator give the derivatives at
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Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents1. G2n

1
The vector current need not be exactly conserved, provided that

is easily calculated from the correlators calculated in lat-
tice QCD, remembering that time runs from 0 at the
origin in both positive and negative directions to a max-
imum value of T/2 in the centre of the lattice.
Defining
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then
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To evaluate the contribution to a

µ

we will replace ⇧̂(q2)
with its [n, n] and [n, n � 1] Padé approximants derived
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[17]. We perform the q2 integral numerically.
Eq. (5) is, of course, approximate when the the tem-

poral extent T of the lattice is finite. This error is ex-
ponentially suppressed, and usually negligible, because
G(t) falls to zero quickly with increasing |t| ( T/2) and
has e↵ectively vanished well before |t| gets to edge of the
lattice at T/2. At large |t| the correlator is dominated
by the lowest-energy vector state in the simulation—

G(t) ! a0

⇣
e�E0|t| + e�E0(T�|t|)

⌘
(8)

— so that terms containing T are suppressed by a factor
of exp(�E0T/2). Such terms become important for high
order moments, since t

n

G(t) peaks at t ⇡ n/E0 for large
n, but they are negligible for the moments of interest

it is renormalized correctly with ZV because: a) there are no

contributions from contact terms in the moments, and b) the

only lattice operators that can mix with the vector current have

higher dimension and so are suppressed by powers of a2
.
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TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621

in units of e. Here

f(q2) ⌘ m

2
µ

q

2
A

3(1 � q

2
A)

1 +m

2
µ

q

2
A

2
(2)

where

A ⌘
q
q

4 + 4m2
µ

q

2 � q

2

2m2
µ

q

2
. (3)

Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since
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poral extent T of the lattice is finite. This error is ex-
ponentially suppressed, and usually negligible, because
G(t) falls to zero quickly with increasing |t| ( T/2) and
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Contribution Value ⇥1010 Uncertainty ⇥1010

QED 11 658 471.895 0.008
Electroweak Corrections 15.4 0.1
HVP (LO) [3] 692.3 4.2
HVP (LO) [4] 694.9 4.3
HVP (NLO) -9.84 0.06
HVP (NNLO) 1.24 0.01
HLbL 10.5 2.6
Total SM prediction [3] 11 659 181.5 4.9
Total SM prediction [4] 11 659 184.1 5.0
BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ⇡ 1.6

TABLE I. Current standard model prediction of aµ including
uncertainties contrasted with the experimental target preci-
sion of the upcoming Fermilab E989 experiment [6, 9, 10].
The individual contributions are defined in Ref. [6].

for the quark-disconnected contribution (see Fig. 1) at
physical pion mass. Significant progress has been made
recently in the computation of an upper bound [15–17],
an estimate using lattice QCD data at heavy pion mass
[18], and towards a first-principles computation at phys-
ical pion mass [19]. Here we present the first result for

a

HVP (LO) DISC
µ

at physical pion mass. We report the re-
sult for the combined up, down, and strange quark con-
tributions.

COMPUTATIONAL METHOD

In the following we describe the refined noise-reduction
technique that allowed for the control of the statistical
noise with modest computational e↵ort.

We follow the basic steps of Ref. [20] and treat the
muon and photon parts of the diagrams in Fig. 1 analyt-
ically, writing

a

µ

= 4↵2

Z 1

0
d(q2)f(q2)[⇧(q2)�⇧(q2 = 0)] , (3)

where f(q2) is a known analytic function [20] and ⇧(q2) is
defined in the continuum through the two-point function
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with sum over space-time coordinate x and J

µ

(x) =
i

P
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Q

f

 
f

(x)�
µ

 
f

(x). The sum is over quark flavors
f with QED charge Q

f

(Q
u

= 2/3, Q
d/s

= �1/3). We
compute ⇧(q2) using the kernel function of Refs. [21, 22]
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+
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Call(t) =
1
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hJ
j

(~x, t)J
j

(0)i (6)

FIG. 1. HVP contributions to aµ with external photon at-
tached to the muon line. As common for non-perturbative
lattice QCD computations, one does not explicitly draw glu-
ons but understands each diagram to stand for all orders in
QCD.

which su�ciently suppresses the short-distance contribu-
tions such that we are able to use two less computation-
ally costly, non-conserved, local lattice vector currents
[23]. For convenience, we have split the space-time sum
over x in a spatial sum over ~x and a sum over the time
coordinate t. We sum over spatial Lorentz indices 0, 1, 2.
The Wick contraction in Eq. (6) yields both connected

and disconnected diagrams of Fig. 1. In the following C

stands for the combined up-, down-, and strange-quark
disconnected contribution of Call, while Cs

stands for the
strange-quark connected contribution of Call. The reason
for defining C

s

will become apparent below. The light
up and down flavors are treated as mass degenerate such
that

C(t) =
1

3V

X
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where V stands for the four-dimensional lattice volume,

V
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= (1/3)(Vu/d
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� Vs

µ

), the average is over all SU(3)
gauge configurations, and

Vf

µ

(t) =
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] (8)

with Dirac operator D(m
f

) evaluated at quark mass m
f

.
Controlling statistical fluctuations is the largest chal-

lenge in the computation of the disconnected contri-
bution. In order to successfully measure the discon-
nected contribution, two conditions need to be satisfied:
(i) large fluctuations of the up/down and strange con-
tributions that enter with opposite sign need to can-
cel [15] and (ii) the measurement needs to average over
the entire spacetime volume without introducing addi-
tional noise. Here we use the following method to satisfy
both (i) and (ii) simultaneously. First, the full quark
propagator is separated in high and low-mode contribu-
tions, where the former are estimated stochastically and
the latter are averaged explicitly [24], i.e., we separate
D

�1 =
P

n

v

n(wn)† + D

�1
high, where the vectors v

n and
w

n are reconstructed from the even-odd preconditioned

Defining 

We can write  

to express aµ in  
terms of the moments 
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❖ Fermilab (Van de Water lead), HPQCD, & MILC 
collaborating on follow-up calculation which will 
reduce uncertainty by increasing statistics & 
adding finer physical-mass ensemble.  

Sub-percent precision will require inclusion of 
isospin breaking & QED.
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TABLE IV: Pion masses for di↵erent tastes, and the corresponding finite-volume plus staggered-pion corrections to be added to
the Taylor coe�cients ⇧j for each configuration in Table II. The pion masses are based upon results in [21], using our definition
of the lattice spacing. The Taylor coe�cients include an extra 10% uncertainty, beyond that due to uncertainties in the pion
masses, to account for higher-mass resonances and higher-order terms in chiral perturbation theory. Results are also given for
the ⇢ decay constant for each configuration (in lattice units).

Set m⇡(⇠5) m⇡(⇠5µ) m⇡(⇠µ⌫) m⇡(⇠µ) m⇡(1) �⇧1 �⇧2 �⇧3 �⇧4 af latt
⇢

1 0.302(2) 0.362(3) 0.407(4) 0.451(5) 0.485(19) 0.0012(1) �0.0054 (6) 0.015 (2) �0.036 (4) 0.178(1)
2 0.216(1) 0.294(3) 0.348(4) 0.399(6) 0.438(23) 0.0028(3) �0.0172(18) 0.067 (7) �0.229 (25) 0.164(2)
3 0.133(1) 0.240(3) 0.304(5) 0.362(7) 0.405(26) 0.0094(9) �0.0880(90) 0.608(64) �4.430(482) 0.166(2)
4 0.301(2) 0.334(2) 0.360(3) 0.390(4) 0.413 (9) 0.0008(1) �0.0041 (4) 0.012 (1) �0.031 (3) 0.139(2)
5 0.218(1) 0.262(2) 0.295(3) 0.331(4) 0.359(11) 0.0025(2) �0.0150(16) 0.059 (6) �0.202 (23) 0.130(5)
6 0.217(1) 0.261(2) 0.294(3) 0.331(4) 0.358(11) 0.0022(2) �0.0139(14) 0.056 (6) �0.203 (22) 0.128(3)
7 0.216(1) 0.261(2) 0.294(3) 0.330(4) 0.358(11) 0.0021(2) �0.0133(14) 0.054 (6) �0.197 (22) 0.129(3)
8 0.133(1) 0.197(2) 0.240(4) 0.284(5) 0.316(13) 0.0081(8) �0.0806(83) 0.587(62) �4.420(481) 0.131(1)
9 0.308(2) 0.319(2) 0.328(2) 0.337(2) 0.345 (4) 0.0005(1) �0.0027 (3) 0.008 (1) �0.022 (2) 0.101(2)
10 0.219(1) 0.235(1) 0.247(2) 0.259(3) 0.270 (5) 0.0013(1) �0.0089 (9) 0.040 (4) �0.153 (17) 0.094(2)

FIG. 4: Uncertainty in aHVP,LO
µ due to finite-volume and

staggered-pion e↵ects as a function of the average taste-
splitting �m2

⇡ between pions and the spatial size L of the
lattice at the physical value of m⇡+ (140 MeV). Here the line
marked �m2

⇡ refers to the splittings for configuration set 8
in Table IV for which L = 5.8 fm. The splittings decrease
slightly faster than a2 as the lattice spacing decreases, so the
other lines shown correspond to conservative uncertainties at
lattice spacings of approximately 0.09 fm, 0.06 fm, 0.045 fm
and 0.03 fm. The uncertainties are estimated to be 1/10 of
the correction.

polarization contribution is larger than the physical pion
mass because of the staggering. This strongly suppresses
finite-volume e↵ects. Fig. 4 shows how the uncertainty
from this correction depends upon the taste-splittings be-
tween pions �m

2
⇡ and the spatial size L of the lattice.

Lines are drawn for varying �m

2
⇡ at physical pion mass

starting from coarse set 8. The uncertainty shown in the
figure for the largest �m

2
⇡ is somewhat smaller than the

uncertainty that we use for configuration set 8 because
the pion mass on that ensemble is smaller than the phys-
ical pion mass.
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FIG. 5: Our final result for aHVP,LO
µ from lattice QCD

compared to an earlier lattice result (also with u, d, s and
c quarks) from the ETM Collaboration [13], and to results
using experimental cross-section information [5–8]. We also
compare with the result expected from the experimental value
for aµ assuming that there are no contributions from physics
beyond the Standard Model.

aµ FIT

We obtain an estimate for aµ from each of our ensem-
bles after we correct for finite-volume plus staggered-pion
lattice artifacts and rescale with the ⇢ mass as described
in the main paper. Our corrections greatly reduce the
dependence of these estimates on the valence and sea
quark masses, and on the lattice spacing. We fit our re-
sults from the di↵erent configurations to the formula in
eq. (6) so we could extrapolate to the correct masses and
zero lattice spacing to obtain our final results. The first
two correction terms in eq. (6) allow for residual depen-
dence on ml and (slight) mistuning in the s quark’s mass.
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4

FIG. 2: Our results for the connected u/d contribution to
aHVP,LO
µ as a function of the u/d quark mass (expressed as

its deviation from the physical value in units of the s quark
mass). The lower curve shows our uncorrected data; the up-
per curve includes correction factors discussed in the text
and is used to obtain the final result. Data come from sim-
ulations with lattice spacings of 0.15 fm (purple triangles),
0.12 fm (blue circles), and 0.09 fm (red squares). The gray
bands show the ±1� predictions of our model (Eq. (7)) after
fitting it to the data. The �2 per degree of freedom was 0.9
and 0.6 for the upper and lower fits, respectively.

our 10 ensembles to a function of the form

a

HVP,LO
µ

✓
1 + c`

�m`

⇤
+ cs

�ms

⇤
+ c̃`

�m`

m`
+ ca2

(a⇤)2

⇡

2

◆

(6)

where �mf ⌘ mf � m

phys
f , and ⇤ ⌘ 5ms is of order the

QCD scale (0.5GeV). The fit parameters have the fol-
lowing priors:

c` = 0(1) cs = 0.0(3) c̃` = 0.00(3) ca2 = 0(1) (7)

together with prior 600(200) ⇥ 10�10 for a

HVP,LO
µ . This

fit corrects for mis-tuned quark masses, higher-order cor-
rections to the ⇡

+
⇡

� contribution, and the finite lattice
spacing. More details are given in the supplementary
materials.

Our final result from the fit for the connected contri-
bution from u/d quarks is a

HVP,LO
µ = 598(6)(8) ⇥ 10�10,

where the first error comes from the lattice calculation
and fit and the second is due to missing contributions
from QED and isospin breaking (mu 6= md), each of
which we estimate to enter at the level of 1% of the u/d

piece of a

HVP,LO
µ . These estimates are supported by more

detailed studies: The key isospin breaking e↵ect of ⇢� !

mixing is estimated in [36] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [37] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III.

TABLE III: Error budget for the connected contributions
to the muon anomaly aµ from vacuum polarization of u/d
quarks.

aHVP,LO
µ (u/d)

QED corrections: 1.0%
Isospin breaking corrections: 1.0%

Staggered pions, finite volume: 0.7%
Valence m` extrapolation: 0.4%

Monte Carlo statistics: 0.4%
Padé approximants: 0.4%

a2 ! 0 extrapolation: 0.3%
ZV uncertainty: 0.4%
Correlator fits: 0.2%

Tuning sea-quark masses: 0.2%
Lattice spacing uncertainty: < 0.05%

Total: 1.8%

DISCUSSION/CONCLUSIONS

Adding results from our earlier analyses [14, 26], the
connected contributions to a

HVP,LO
µ are:

a

HVP,LO
µ

��
conn.

⇥1010 =

8
>>><

>>>:

598(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(8)

We combine these results with our recent estimate [27]
of the contribution from disconnected diagrams involving
u, d and s quarks. We take this as 0(9) ⇥ 10�10 to ob-
tain an estimate for the entire contribution from hadronic
vacuum polarization:

a

HVP,LO
µ = 666(6)(12) ⇥ 10�10 (9)

This agrees well with the only earlier u/d/s/c lat-
tice QCD result, 674(28) ⇥ 10�10 [13], but has errors
from the lattice calculation reduced by a factor of four.
It also agrees with earlier non-lattice results (⇥1010):
694.9(4.3) [5], 690.8(4.7) [6], and 681.9(3.2) [7] and
687.2(3.5) [8]. These are separately more accurate than
our result but the spread between them is comparable to
our uncertainty.

It is also useful to compare our result to the ex-
pectation from experiment. Assuming there is no new
physics beyond the Standard Model, experiment requires
a

HVP,LO
µ to be 720(7) ⇥ 10�10. This value is obtained

by subtracting from experiment the accepted values of
QED [38], electroweak [39], higher order HVP [5, 40] and
hadronic light-by-light contributions [41]. It is roughly
3.5� away from our result (Eq. (9)), but we need signif-
icantly smaller theoretical errors before we can make a
case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [28, 42] and from new simulations

Uncertainty dominated by 
isospin breaking, EM. 
These effects have not been 
included at all yet. 
Including them should reduce 
these dramatically.

Remaining uncertainty from 
a half dozen effects, must be 
ground down by numerical 
brute force  
— no magic bullet.
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HLbL: estimation from hadronic models

Hadronic light-by-light contribution cannot be expressed in terms of experimental 
quantities and must be obtained from theory  
[cf. Jegerlehner and Nyffeler, Phys.Rept. 477 (2009) 1-110 and Refs. therein] 

All recent calculations compatible with constraints from large-Nc and chiral limits 

All normalize dominant π0-exchange contribution to measured π0→ữữ decay 
width 

Differ for form factor shape due to different QCD-model assumptions such as vector-
meson dominance, chiral perturbation theory, and the large Nc limit

20

Neutral Meson 
Exchange⇡0, ⌘, ⌘0, . . .

µµ

Charged Meson 
Loops

µµ

⇡±, K±, . . .
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The Glasgow consensus for HLbL

• Quoted error for aµHLbL is based on model estimates, but does not 
cover spread of values. 

• π0-exchange contribution estimated to be ~10 times larger than others. 

• Largest contribution to uncertainty (±1.9×10-10) attributed to charged 
pion and kaon loop contributions.  
 
 
 
 
 
 
 

➡ Error could easily be underestimated (and comparable to that from 
HVP!), 
and is not systematically improvable.
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Theory of the Hadronic Light-by-Light Contribution to
Muon g-21

Joaquim Prades

CAFPE and Departamento de F́ısica Teórica y del Cosmos, Universidad de
Granada, Campus de Fuente Nueva, E-18002 Granada, Spain.

Abstract

I report on the theory, recent calculations and present status of the hadronic
light-by-light contribution to muon g − 2. In particular, I report on work
done together with Eduardo de Rafael and Arkady Vainshtein where we
get a

HLbL = (10.5 ± 2.6) × 10−10 as our present result for this quantity.

September 2009

1Invited talk at “Sixth International Workshop on Chiral Dynamics”, July 6-10 2009, Bern,
Switzerland.

Need 1.4x10-10 to match planned experimental precision.

Prades, de Rafael, Vainshtein, 0901.0306,  
:0909.0953v1.
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Notable lattice work on light-by-light scattering

• Hayakawa et al., PoS LAT2005 (2006) 353; Blum et al., PoS 
LATTICE2012 (2012) 022; ...  Propose dynamical photons 
method. 

• Cohen et al., PoS LATTICE2008 (2008) 159. 

• Feng et al., Phys.Rev.Lett. 109 (2012) 182001. 

• Rakow, Lattice 2008. 

• Blum et al., PRD93, 014503 (2016); L. Jin, Lattice 2016.

22
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Hadronic LbL by brute force?
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PHOTON —P HOTON SCATTER I N G CONTR I BUT ION TO TH E ~ ~ ~

given. In Sec. 6 we study the behavior of the Feynman
integrals in the limit where p= (4N./4N„)2 tends to zero.
The method of numerical integration used to evaluate
the integrals as well as the results of computation are
discussed in Sec. 7. Some properties of the functions A;
and 8;, are described in Appendix A. In Appendix B
we give the unsimplified output of REDUCE for graph
IV. Some formulas needed in Sec. 6 are given in Appen-
dix C.

2. EXTRACTION OF MAGNETIC-MOMENT TERM

According to the Feynman-Dyson rules, we can
write the contribution of the graphs of Fig. 1 in the
form"

&p'
I
~

I p,» = 2(2~)'~—'(p' p »——
(24r)'"

divergent for large p8, but the sum of all six terms is
convergent and well defined if it is properly regularized.
In the integral (2.2), each term may again diverge be-
cause of the photon-photon scattering subdiagrams. In
addition, each term may diverge logarithmically when
all three momenta Pl, P8, and P8 go to infinity simul-
taneously. Nevertheless, it is expected that cancella-
tion of ultraviolet divergences takes place, as in photon-
photon scattering, and that there will be no real diver-
gence problem as far as the magnetic-moment term of
(2.2) is concerned.
Although it is not difficult to show by direct calcula-

tion that this is in fact the case, it would be convenient
if the formula (2.2) could be rewritten so that the can-
cellation of ultraviolet divergences is manifestly evident
from the beginning. This can be achieved by making use
of the identity

where

2

a
II.,-(-p, p., p., -», (2.4)

gQp,

8Zp +zpap( Pl) P2y P8p»
X eM, (2.1)
(2~8popo') '"

3II=
(22r) 8

d4p d4p p
—2p —2p —2 which is easily obtained by differentiating the condition

of gauge invariance

X"Il....(—Pi, P, P8, -»u(P') V"(P —~,)-' ~"II~n~~( p4 p» p»»=o (2 5)

and II„„„is the polarization tensor of fourth rank
representing the photon-photon scattering

M= 4"6"u(p')M„„u(p), (2.6)II...„(—p, , p„p„—Z) where
g2

Xy&(p8 448„)—'y' u(p), (2.2) with respect to 6I", regarding, e.g., 6, pl, and p8 as
independent variables.
Substituting (2.4) into (2.3), we obtain

d'P8 Trf&„(P8 448,) 'P„—(P& m,)—,

(24r) 4

Xp.(P,—m.)-'p„(P,—m,)-'
+(five other terms) —(regularization terms) 7. (2.3)

~pe — d pld p8 pl p2 p8
(22r)'

X ll.p..(—pi) p2, p8, —&)
X~'(P m.)-'v'(P— m.)-'v —(2.7).

As usual, all momenta are restricted by the energy-
momentum conservation law at each vertex. As is well Now, when the differentiation with respect to A~ is
known, individual terms of II„„„arelogarithmically carried out explicitly in (2.7), 3I can be regarded as a

Pe

Fro. 1. Feynman diagrams containing sub-
diagrams of photon-photon scattering type.
The heavy, thin, and dotted lines represent
the muon, electron, and photon, respectively.
There are three more diagrams obtained by
reversing the direction of the electron loop.

P9

P) P~ P~
I

P P, P, P

P I P P

P P P P

IP )P lP
I 2

I i

P P P P

2' Qur metric and conventions are the same as that of Ref. 2. The Born current corresponds to M=I(P')c&y„u(P), P'=P+rl.
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Pe

Fro. 1. Feynman diagrams containing sub-
diagrams of photon-photon scattering type.
The heavy, thin, and dotted lines represent
the muon, electron, and photon, respectively.
There are three more diagrams obtained by
reversing the direction of the electron loop.

P9

P) P~ P~
I

P P, P, P

P I P P

P P P P

IP )P lP
I 2

I i

P P P P

2' Qur metric and conventions are the same as that of Ref. 2. The Born current corresponds to M=I(P')c&y„u(P), P'=P+rl.

Replace with LQCD calculation.

Five exterior photon momenta to integrate. 
At each point, ~64 terms (e.g., photon 
gamma matrices).

Aldins, Brodsky, Durfner, & Kinoshita

To do LbL with ordinary methods naively 
takes orders of magnitude more CPU time 
than simpler calculations.
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Dynamical photon method

• Method introduced by Blum and collaborators in which one 
computes the full hadronic amplitude, including the muon and 
photons, nonperturbatively. 

• Treat photon field in parallel with gluon field and include in gauge 
link, so the simulation and analysis follows a conventional lattice-
QCD calculation. 

• In practice, must insert a single valence photon connecting the 
muon line to the quark loop “by hand” into the correlation 
function, then perform correlated nonperturbative subtraction to 
remove the dominant O(α2) contamination.

24

Hayakawa et al., PoS LAT2005 (2006) 353
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Mixed dynamical and analytic photons…

New method combines dynamical QCD gauge-field configurations with 
exact analytic formulae for photon propagators. 

Exploits stochastic methods for position-space sums to control 
computational cost. 

Obtain ≲10% statistical errors at the physical pion mass in 
ballpark of Glasgow consensus value aμHLbL,GC × 1010 = 10.5(2.6). 
 
 
 

Full study of systematic errors including lattice-spacing and finite-volume 
effects still needed — dynamical photons have power-law volume 
corrections instead of exponential in the pion mass (the usual case).  
Initial results encouraging!

25

L. Jin, Lattice 2016; preliminary update of Blum et al.

aHLbL
µ ⇥ 10

10
=

(
11.60(0.96)stat. connected

�6.25(0.80)stat. disconnected

Statistical errors at 
least are in the 
ballpark required.

Blum et al., PRD93, 014503 (2016)
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… yield a great improvement in statistics

26

Figure 9. A comparison of the results for F2(q2)/(α/π)3 obtained in the original lattice QCD

cHLbL calculation [17] (diamonds) with those obtained on the same gauge field ensemble using the

moment method presented here (circles). The points from the original subtraction method with

q2 = (2π/24)2 = (457MeV)2 were obtained from 100 configurations and the evaluation of 81,000

point-source quark propagators for each value of the source-sink separation tsep. In contrast, the

much more statistically precise results from the moment method required a combined 26,568 quark

propagator inversions for both values of tsep and correspond to q2 = 0. The moment method value

for tsep = 32 is listed in Tab. IX.

make use of the most effective of the numerical strategies discussed above: the use of exact

photon propagators and the position-space moment method to determine F2 evaluated at

q2 = 0. Since these calculations are less computationally costly than those for QCD we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [33, 34]. This QED calculation both

serves as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and non-zero-lattice-

spacing errors.

In Fig. 10 we show results for F2(0) computed for three different lattice spacings, i.e.

39

Statistical precision of new method (red) is an order 
of magnitude better than the previous method 
(black).
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Summary

• Lattice calculations of light by light and vacuum polarization 
diagrams for muon g-2 are making rapid progress, 

• but work remains to be done. 

• Hadronic vacuum polarization is needed to 0.2%, better than 
anything achieved so far by lattice. 

• Hadronic light-by-light requires new methods which are under 
development. 

• Precision demands on theory from experiment are daunting — 
it’s a race to see if theory will deliver everything experiment 
needs by 2018, the year of first results from the new experiment.

27


