EFT constraints from precision measurements and prospects

David Marzocca

Universität

Zürich

Precision theory for precise measurements at LHC and future colliders ICISE, Quy Nhon, Vietnam, 28/09/2016

The Linear SM Effective Field Theory

See talk by Sacha Davidson

Scale of New Physics is high

Assumptions

 $\Lambda_{NP} \gg m_h$

Higgs is a SU(2)_L doublet

Low energy theory specified by particle content + symmetries

Leading deformations of the SM

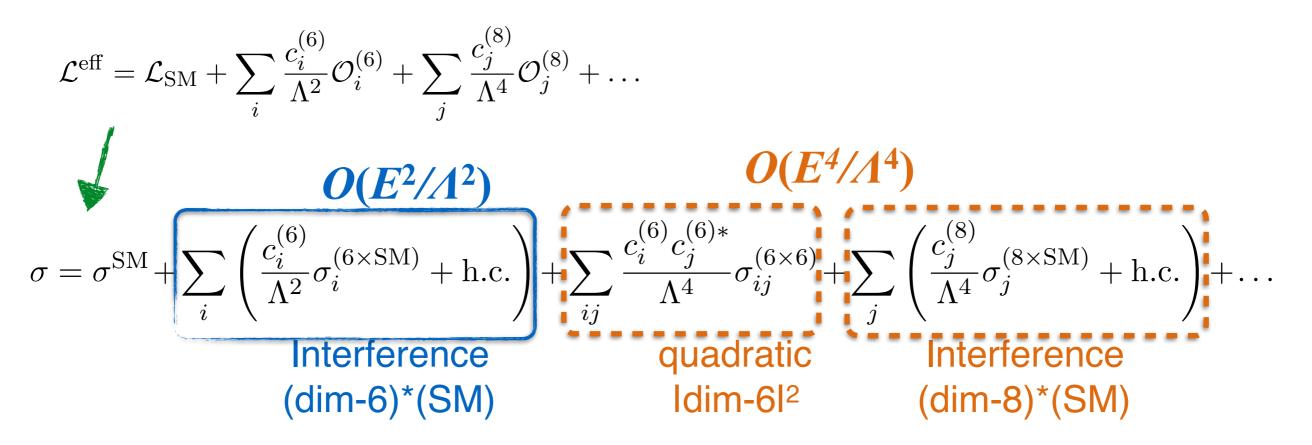
+ L and B conservation

$$\mathcal{L}^{\text{eff}} = \mathcal{L}_{\text{SM}} + \left[\sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}\right] + \sum_{j} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots\right]$$

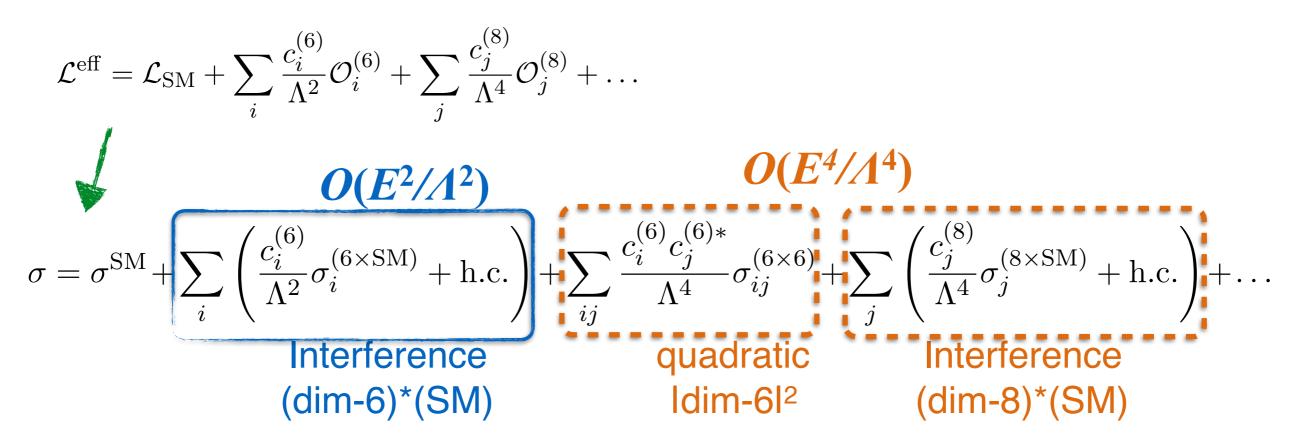
59 independent dim-6 operators if flavour universality.2499 parameters for a generic flavour structure.

[Buchmuller and Wyler '86, Grzadkowski et al. 1008.4884, Alonso et al. 1312.2014]

Observables and the SM EFT



Observables and the SM EFT



Quadratic Idim-61² terms are formally of higher order.

If the fit is mostly sensitive to them, validity of the EFT expansion is under question: dim-8 could have similar importance.

In some models it could still be OK, e.g. for: $c_i^{(6)} \sim c_j^{(8)} \sim g_*^2 \gg 1$ See talk on friday - Florian Goertz and D.M.

Basis choice

By using field redefinitions (or SM e.o.m.) it is possible to remove certain operators in favor of others

E.g:

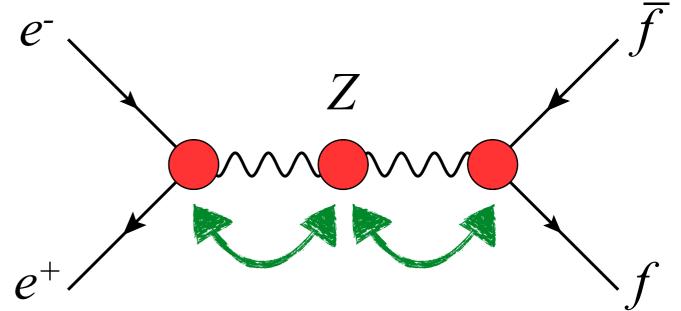
$$D^{\nu}W^{a}_{\nu\mu} = -\frac{ig}{2}(H^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D^{\mu}}H) - \frac{g}{2}\left(\sum_{i}\bar{Q}_{i}\gamma_{\mu}\sigma^{a}Q_{i} + \bar{L}_{i}\gamma_{\mu}\sigma^{a}L_{i}\right) + \mathcal{O}(1/\Lambda^{2})$$

$$J^{a}_{\mu}$$

$$\mathcal{O}_{W} = ig\left(H^{\dagger}\tau^{a}\overset{\leftrightarrow}{D^{\mu}}H\right)D^{\nu}W^{a}_{\mu\nu} \quad \longleftrightarrow \quad ig(H^{\dagger}\sigma^{a}\overset{\leftrightarrow}{D^{\mu}}H)J^{a}_{\mu} + \text{dim-8}$$

$$SILH \quad Warsaw$$

Physical observables are independent on such choices (up to dim-8 effects), but all operators should be considered.



e.g. SILH basis	 Giudice et al. [hep-ph/0703164], see HXSWG YR4 - EFT chapter
-----------------	--

	Bosonic CP-even		Bosonic CP-odd Vertex		Vertex
O_H	$rac{1}{2v^2} \left[\partial_\mu (H^\dagger H) ight]^2$			$[O_{H\ell}]_{ij}$	$\frac{i}{v^2} \bar{\ell}_i \gamma_\mu \ell_j H^\dagger \overleftrightarrow{D_\mu} H$
O_T	$rac{1}{2v^2} \left(H^\dagger \overleftarrow{D_\mu} H ight)^2$			$[O'_{H\ell}]_{ij}$	$\frac{i}{v^2} \bar{\ell}_i \sigma^k \gamma_\mu \ell_j H^{\dagger} \sigma^k \overleftarrow{D_{\mu}} H$
O_6	$-\frac{\lambda}{v^2}(H^{\dagger}H)^3$		2	$[O_{He}]_{ij}$	$\frac{i}{v^2} \bar{e}_i \gamma_\mu \bar{e}_j H^\dagger \overleftarrow{D_\mu} H$
O_g	$rac{g_s^2}{m_W^2} H^\dagger H G^a_{\mu u} G^a_{\mu u}$	\widetilde{O}_g	$\frac{g_s^2}{m_W^2} H^{\dagger} H \widetilde{G}^a_{\mu\nu} G^a_{\mu\nu}$	$[O_{Hq}]_{ij}$	$\frac{i}{v^2} \bar{q}_i \gamma_\mu q_j H^\dagger \overleftarrow{D_\mu} H$
O_γ	$rac{g'^2}{m_W^2} H^{\dagger} H B_{\mu u} B_{\mu u}$	\widetilde{O}_{γ}	$\frac{g^{\prime 2}}{m_W^2} H^{\dagger} H \widetilde{B}_{\mu\nu} B_{\mu\nu}$	$[O'_{Hq}]_{ij}$	$\frac{i}{v^2}\bar{q}_i\sigma^k\gamma_\mu q_jH^\dagger\sigma^k\overleftarrow{D_\mu}H$
O_W	$rac{ig}{2m_W^2} \left(H^{\dagger} \sigma^i \overleftrightarrow{D_{\mu}} H ight) D_{\nu} W^i_{\mu u}$			$[O_{Hu}]_{ij}$	$\begin{bmatrix} v^{-1} & \gamma_{\mu} u_{j} \\ \frac{i}{v^{2}} \bar{u}_{i} \gamma_{\mu} u_{j} H^{\dagger} \overleftrightarrow{D_{\mu}} H \end{bmatrix}$
O_B	$\frac{ig'}{2m_W^2} \left(H^\dagger \overleftrightarrow{D_\mu} H \right) \partial_\nu B_{\mu\nu}$	~	~	$[O_{Hu}]_{ij}$ $[O_{Hd}]_{ij}$	$\begin{vmatrix} v^2 d_i \gamma_\mu d_j H & D_\mu H \\ \frac{i}{v^2} \bar{d}_i \gamma_\mu d_j H^\dagger \overleftrightarrow{D_\mu} H \end{vmatrix}$
O_{HW}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H \right) W^i_{\mu\nu}$	\widetilde{O}_{HW}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H \right) \widetilde{W}^i_{\mu\nu}$	-	
O_{HB}	$rac{ig'}{m_W^2} \left(D_\mu H^\dagger D_ u H ight) B_{\mu u}$	\widetilde{O}_{HB}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger D_\nu H \right) \widetilde{B}_{\mu\nu}$	$[O_{Hud}]_{ij}$	$\frac{i}{v^2}\bar{u}_i\gamma_\mu d_j\tilde{H}^\dagger D_\mu H$
O_{2W}	$rac{1}{m_W^2} D_\mu W^i_{\mu u} D_ ho W^i_{ ho u}$				\bullet [O] [O /]
O_{2B}	$rac{1}{m_W^2}\partial_\mu B_{\mu u}\partial_ ho B_{ ho u}$			Excep	$\mathbf{t} \ [O_{H\ell}]_{11}, \ [O'_{H\ell}]_{11}$
O_{2G}	$rac{1}{m_W^2} D_\mu G^a_{\mu u} D_ ho G^a_{ ho u}$	~	_ ³ , ∼	(subst	ituted in favor of O_{W} , O_{B})
O_{3W}	$rac{g^3}{m_W^2}\epsilon^{ijk}W^i_{\mu u}W^j_{ u ho}W^k_{ ho\mu}$	\widetilde{O}_{3W} \widetilde{O}_{3G}	$\frac{g^3}{m_W^2} \epsilon^{ijk} \widetilde{W}^i_{\mu\nu} W^j_{\nu\rho} W^k_{\rho\mu}$	+ Yuk	awa, Dipole and 4-fermion operators
O_{3G}	$rac{g_s^3}{m_W^2}f^{abc}G^a_{\mu u}G^b_{ u ho}G^c_{ ho\mu}$	O_{3G}	$\frac{g_s^3}{m_W^2} f^{abc} \widetilde{G}^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$		

e.g. SIL	- basis	— Giudice et al. [hep-ph/0703164],	see HXSWG YR4 - EFT chapter
----------	---------	------------------------------------	-----------------------------

	Bosonic CP-even		Bosonic CP-odd Vertex		Vertex
O_H	$rac{1}{2v^2} \left[\partial_\mu (H^\dagger H) ight]^2$			$[O_{H\ell}]_{ij}$	$\frac{i}{v^2} \bar{\ell}_i \gamma_\mu \ell_j H^\dagger \overleftarrow{D_\mu} H$
O_T	$rac{1}{2v^2} \left(H^\dagger \overleftarrow{D_\mu} H \right)^2$			$[O'_{H\ell}]_{ij}$	$\frac{i}{v^2} \bar{\ell}_i \sigma^k \gamma_\mu \ell_j H^\dagger \sigma^k \overleftarrow{D_\mu} H$
O_6	$-\frac{\lambda}{v^2}(H^{\dagger}H)^3$		2	$[O_{He}]_{ij}$	$\frac{i}{v^2}\bar{e}_i\gamma_{\mu}\bar{e}_jH^{\dagger}\overleftarrow{D_{\mu}}H$
O_g	$rac{g_s^2}{m_W^2} H^\dagger H G^a_{\mu u} G^a_{\mu u}$	\widetilde{O}_g	$\frac{g_s^2}{m_W^2} H^{\dagger} H \widetilde{G}^a_{\mu\nu} G^a_{\mu\nu}$	$[O_{Hq}]_{ij}$	$i \frac{i}{v^2} \bar{q}_i \gamma_\mu q_j H^\dagger \overleftrightarrow{D_\mu} H$
O_{γ}	$rac{g'^2}{m_W^2} H^\dagger H B_{\mu u} B_{\mu u}$	\widetilde{O}_{γ}	$rac{g'^2}{m_W^2} H^{\dagger} H \widetilde{B}_{\mu u} B_{\mu u}$	$[O'_{Hq}]_{ij}$	$\left \begin{array}{c} \frac{i}{v^2} \bar{q}_i \sigma^k \gamma_\mu q_j H^{\dagger} \sigma^k \overleftarrow{D_{\mu}} H \right. $
O_W	$rac{ig}{2m_W^2} \left(H^\dagger \sigma^i \overleftrightarrow{D_\mu} H ight) D_ u W^i_{\mu u}$			$[O_{Hu}]_{ij}$	$\begin{vmatrix} v^2 & I^{\prime} & \gamma_{\mu} u_{j} \\ \frac{i}{v^2} \bar{u}_i \gamma_{\mu} u_{j} H^{\dagger} \overleftrightarrow{D_{\mu}} H \end{vmatrix}$
O_B	$rac{ig'}{2m_W^2} \left(H^\dagger \overleftrightarrow{D_\mu} H ight) \partial_ u B_{\mu u}$	~	~	$[O_{Hu}]_{ij}$ $[O_{Hd}]_{ij}$	$\begin{vmatrix} v^2 d_i \gamma_\mu d_j H & D \mu H \\ \frac{i}{v^2} \bar{d}_i \gamma_\mu d_j H^\dagger \overleftrightarrow{D_\mu} H \end{vmatrix}$
O_{HW}	$rac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H ight) W^i_{\mu u}$	\tilde{O}_{HW}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H \right) \widetilde{W}^i_{\mu\nu}$	-	$\begin{vmatrix} v^2 \bar{u}_i \gamma_\mu d_j H D_\mu H \\ \frac{i}{v^2} \bar{u}_i \gamma_\mu d_j \tilde{H}^\dagger D_\mu H \end{vmatrix}$
O_{HB}	$rac{ig'}{m_W^2} \left(D_\mu H^\dagger D_ u H ight) B_{\mu u}$	\widetilde{O}_{HB}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger D_\nu H \right) \widetilde{B}_{\mu\nu}$	$[O_{Hud}]_{ij}$	$\left[\frac{1}{v^2}u_i\gamma_{\mu}u_j\Pi D_{\mu}\Pi\right]$
O_{2W}	$rac{1}{m_W^2} D_\mu W^i_{\mu u} D_ ho W^i_{ ho u}$			-	\mathbf{L}
O_{2B}	$rac{1}{m_W^2}\partial_\mu B_{\mu u}\partial_ ho B_{ ho u}$			Excep	$[O_{H\ell}]_{11}, \ [O'_{H\ell}]_{11}$
O_{2G}	$rac{1}{m_W^2} D_\mu G^a_{\mu u} D_ ho G^a_{ ho u}$	$\widetilde{}$		(subst	ituted in favor of O_W , O_B)
O_{3W}	$rac{g^3}{m_W^2}\epsilon^{ijk}W^i_{\mu u}W^j_{ u ho}W^k_{ ho\mu}$	\widetilde{O}_{3W} \widetilde{O}_{3G}	$\frac{\frac{g^3}{m_W^2}}{\frac{g_s^3}{m_W^2}} \epsilon^{ijk} \widetilde{W}^i_{\mu\nu} W^j_{\nu\rho} W^k_{\rho\mu}$ $\frac{g_s^3}{m_W^2} f^{abc} \widetilde{G}^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$	+ Yuk	awa, Dipole and 4-fermion operators
O_{3G}	$rac{g_s^3}{m_W^2}f^{abc}G^a_{\mu u}G^b_{ u ho}G^c_{ ho\mu}$	O_{3G}	$\Big \frac{g_s}{m_W^2} f^{aoc} G^a_{\mu\nu} G^o_{\nu\rho} G^c_{\rho\mu}$		

Operators normalized so that:

 $\hat{c}_i \sim O(m_W^2 / \Lambda^2)$

S or TGC are normalized in similar way. Useful in order to deal with adimensional coefficients.

e.g. SILH basis — Giudice et al. [hep-ph/0703164],	see HXSWG YR4 - EFT chapter
--	-----------------------------

Bosonic CP-even		Bosonic CP-odd		Vertex		
O_H	$\frac{1}{2v^2} \left[\partial_\mu (H^\dagger H) \right]^2$			$[O_{H\ell}]_{ij}$	$\frac{i}{v^2} \bar{\ell}_i \gamma_\mu \ell_j H^\dagger \overleftrightarrow{D_\mu} H$	
O_T	$rac{1}{2v^2}\left(H^\dagger \overleftarrow{D_\mu} H ight)^2$			$[O'_{H\ell}]_{ij}$	$\frac{i}{v^2} \bar{\ell}_i \sigma^k \gamma_\mu \ell_j H^\dagger \sigma^k \overleftarrow{D_\mu} H$	
O_6	$-\frac{\lambda}{v^2}(H^{\dagger}H)^3$		2	$[O_{He}]_{ij}$	$\frac{i}{v^2} \bar{e}_i \gamma_\mu \bar{e}_j H^\dagger \overleftarrow{D_\mu} H$	
O_g	$rac{g_s^2}{m_W^2} H^\dagger H G^a_{\mu u} G^a_{\mu u}$	\widetilde{O}_g	$rac{g_s^2}{m_W^2} H^\dagger H \widetilde{G}^a_{\mu u} G^a_{\mu u}$	$[O_{Hq}]_{ij}$	$\frac{i}{v^2} \bar{q}_i \gamma_\mu q_j H^\dagger \overleftrightarrow{D_\mu} H$	
O_{γ}	$rac{g'^2}{m_W^2} H^\dagger H B_{\mu u} B_{\mu u}$	\widetilde{O}_{γ}	$rac{g'^2}{m_W^2} H^{\dagger} H \widetilde{B}_{\mu u} B_{\mu u}$	$[O'_{Hq}]_{ij}$	$\frac{i}{v^2} \bar{q}_i \sigma^k \gamma_\mu q_j H^{\dagger} \sigma^k \overleftarrow{D_{\mu}} H$	
O_W	$rac{ig}{2m_W^2} \left(H^\dagger \sigma^i \overleftrightarrow{D_\mu} H ight) D_ u W^i_{\mu u}$			$[O_{Hu}]_{ij}$	$\begin{vmatrix} v^2 & H & \gamma \mu H \\ \frac{i}{v^2} \bar{u}_i \gamma_\mu u_j H^{\dagger} \overleftrightarrow{D_{\mu}} H \end{vmatrix}$	
O_B	$rac{ig'}{2m_W^2} \left(H^\dagger \overleftrightarrow{D_\mu} H \right) \partial_ u B_{\mu u}$	~	. ~	$[O_{Hu}]_{ij}$ $[O_{Hd}]_{ij}$	$\frac{i}{v^2} \bar{d}_i \gamma_\mu d_j H^\dagger \overleftrightarrow{D}_\mu H$	
O_{HW}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H \right) W^i_{\mu\nu}$	\widetilde{O}_{HW}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H \right) \widetilde{W}^i_{\mu\nu}$		$\frac{1}{v^2} \bar{u}_i \gamma_\mu d_j H^\dagger D_\mu H$ $\frac{i}{v^2} \bar{u}_i \gamma_\mu d_j \tilde{H}^\dagger D_\mu H$	
O_{HB}	$rac{ig'}{m_W^2} \left(D_\mu H^\dagger D_ u H ight) B_{\mu u}$	\widetilde{O}_{HB}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger D_\nu H \right) \widetilde{B}_{\mu\nu}$	$[O_{Hud}]_{ij}$	$\frac{1}{v^2}u_i\gamma_\mu a_jH$ ' $D_\mu H$	
O_{2W}	$rac{1}{m_W^2} D_\mu W^i_{\mu u} D_ ho W^i_{ ho u}$			F	\cdot	
O_{2B}	$rac{1}{m_W^2}\partial_\mu B_{\mu u}\partial_ ho B_{ ho u}$			Excep	$\mathbf{t} \ [O_{H\ell}]_{11}, \ [O'_{H\ell}]_{11}$	
O_{2G}	$rac{1}{m_W^2} D_\mu G^a_{\mu u} D_ ho G^a_{ ho u}$	~	.3, ~	(substi	ituted in favor of O_{W} , O_B)	
O_{3W}	$rac{g^3}{m_W^2}\epsilon^{ijk}W^i_{\mu u}W^j_{ u ho}W^k_{ ho\mu}$	\widetilde{O}_{3W} \widetilde{O}_{3G}	$rac{g^3}{m_W^2}\epsilon^{ijk}\widetilde{W}^i_{\mu u}W^j_{ u ho}W^k_{ ho\mu}$	+ Yuk	awa, Dipole and 4-fermion	
O_{3G}	$rac{g_s^3}{m_W^2}f^{abc}G^a_{\mu u}G^b_{ u ho}G^c_{ ho\mu}$	O_{3G}	$rac{g_s^3}{m_W^2} f^{abc} \widetilde{G}^a_{\mu u} G^b_{ u ho} G^c_{ ho\mu}$			

Operators normalized so that:

 $\hat{c}_i \sim O(m_W^2 / \Lambda^2)$

S or TGC are normalized in similar way. Useful in order to deal with adimensional coefficients.

However, <u>never forget</u>: EFT is based on a high mass scale Λ .

operators

For O(1) couplings $\hat{c} \leq 10\% \longrightarrow \Lambda \geq 3 \ m_W \sim 250 \ GeV$

A step-by-step approach

i.e. how to successfully make sense of 2499 parameters

Any given on-shell process receives contributions from a limited number of operators - O(10).

A step-by-step approach

i.e. how to successfully make sense of 2499 parameters

Any given on-shell process receives contributions from a limited number of operators - O(10).

Hierarchy of precision.

Some observables are much more precise than others. Impose these bounds before going on to less precise ones.

e.g. Pomarol and Riva [1308.2803]

A step-by-step approach

i.e. how to successfully make sense of 2499 parameters

Any given on-shell process receives contributions from a limited number of operators - O(10).

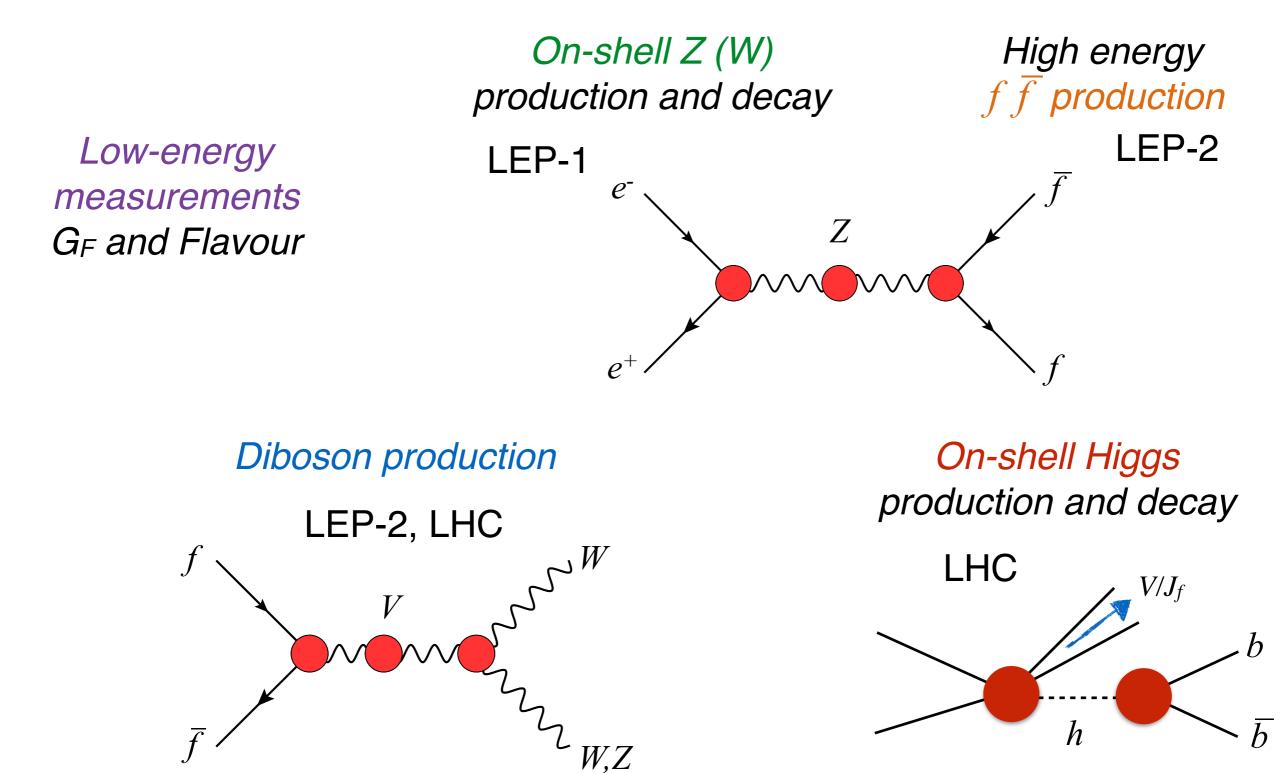
Hierarchy of precision.

Some observables are much more precise than others. *Impose these bounds before going on to less precise ones.* e.g. Pomarol and Riva [1308.2803]

Example:

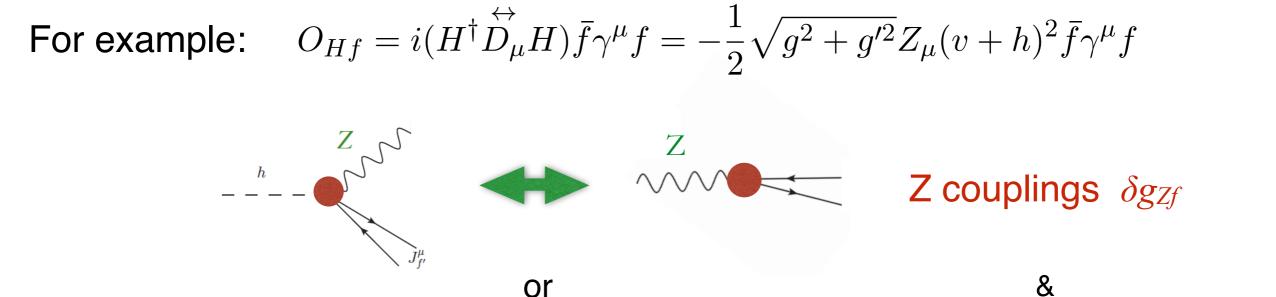
Very precise $\hat{S} \lesssim 10^{-3}$ $\hat{S} = \alpha_i \hat{c}_i^{(6)}$ Less precise $\delta g_{1,z} \lesssim 10\%$ $\delta g_{1,z} = \beta_i \hat{c}_i^{(6)} + k(\alpha_i \hat{c}_i^{(6)}) \simeq \beta_i \hat{c}_i^{(6)}$

Selection of relevant processes



The power of the SMEFT: relating different observables

The same operator can contribute to different processes.



Higgs decay & $h \longrightarrow V \longrightarrow G_0 \longrightarrow V$ Triple Gauge Couplings $\delta \kappa_z, \delta g_{1,z}$

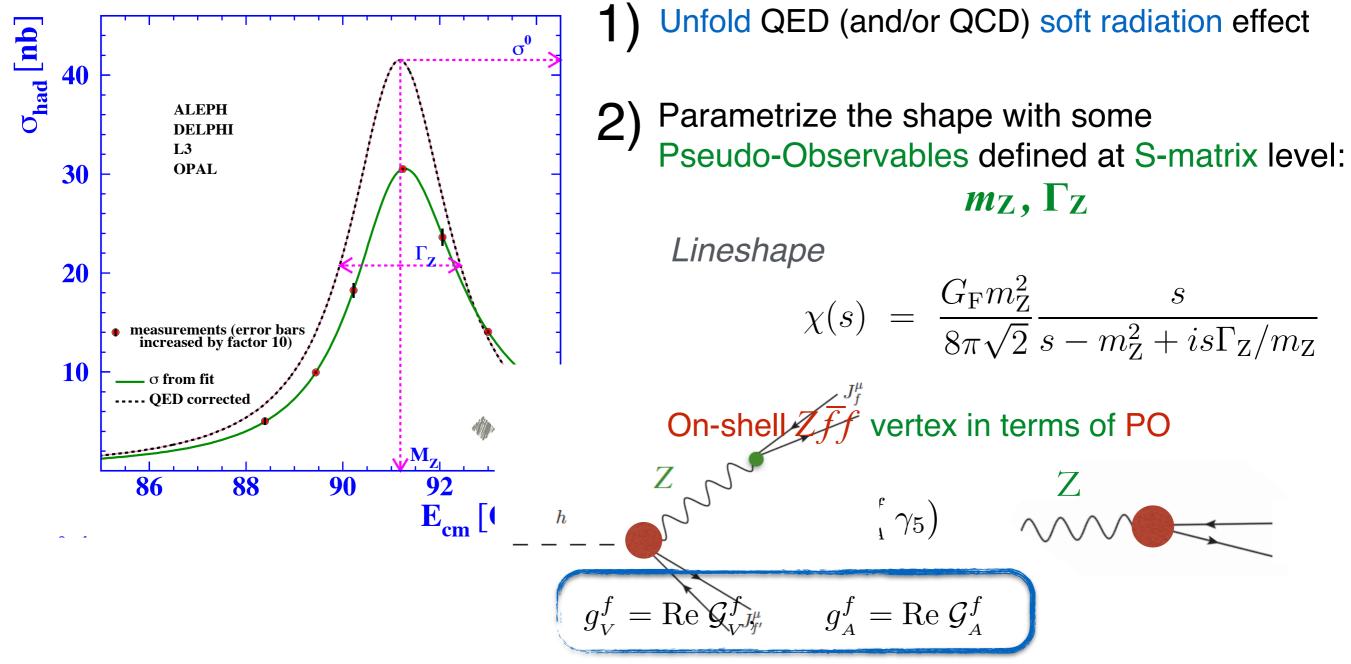
Combine different datasets (e.g. LEP-2 + Higgs data) to derive stronger constraints for the EFT.

EFT analysis of EW data

Z-pole

 $\epsilon_{Ze_L}, \epsilon_{Ze_R}, \epsilon_{Z\mu_L}, \epsilon_{Z\mu_R}$ e^{-}

LEP EW WG [hep-ex/0509008]



Bounds on a set of PO

Observable	Experimental value
$\Gamma_Z [\text{GeV}]$	2.4952 ± 0.0023
$\sigma_{\rm had} \ [{\rm nb}]$	41.541 ± 0.037
R_e	20.804 ± 0.050
R_{μ}	20.785 ± 0.033
R_{τ}	20.764 ± 0.045
$A_{\mathrm{FB}}^{0,e}$	0.0145 ± 0.0025
$A^{0,\mu}_{ m FB}$	0.0169 ± 0.0013
$A_{\mathrm{FB}}^{0, au}$	0.0188 ± 0.0017
R_b	0.21629 ± 0.00066
R_c	0.1721 ± 0.0030
A_b^{FB}	0.0992 ± 0.0016
A_c^{FB}	0.0707 ± 0.0035
A_e	0.1516 ± 0.0021
A_{μ}	0.142 ± 0.015
A_{τ}	0.136 ± 0.015
A_e	0.1498 ± 0.0049
A_{τ}	0.1439 ± 0.0043
A_b	0.923 ± 0.020
A_c	0.670 ± 0.027
A_s	0.895 ± 0.091
R_{uc}	0.166 ± 0.009
	× 4

 $[\]delta m = (2.6 \pm 1.9) \times 10^{-4}$

Z-pole

Match the PO to EFT coefficients (e.g. at LO)

 Very strong constraints on
 Lepton Flavor Universality and Zff vertex corrections

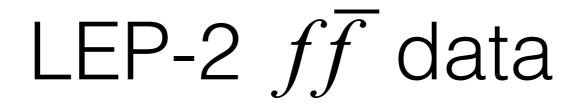
See e.g. Falkowski et al. 1503.07872

To simplify: assume Flavor Universality

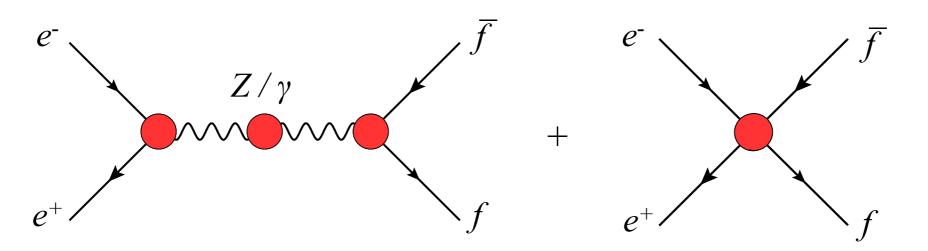
$$\begin{pmatrix} \hat{c}'_{HL} \\ \hat{c}_{HL} \\ \hat{c}_{HL} \\ \hat{c}_{HE} \\ \hat{c}'_{HQ} \\ \hat{c}_{HQ} \\ \hat{c}_{HQ} \\ \hat{c}_{HU} \\ \hat{c}_{HU} \\ \hat{c}_{HD} \\ \hat{c}_{ll} \end{pmatrix} = \begin{pmatrix} -1.9 \pm 1.1 \\ 1.1 \pm 0.7 \\ 0.1 \pm 0.6 \\ -4.7 \pm 1.9 \\ 0.2 \pm 2.0 \\ 7.0 \pm 6.9 \\ -31.3 \pm 10.3 \\ -4.7 \pm 3.5 \end{pmatrix} \cdot 10^{-3}$$

Falkowski, Riva 1411.0669

~ 10^{-3} precision



The Z (or γ) is off-shell



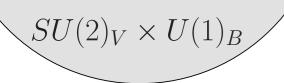
This bounds 4-fermion operators

See [Falkowski et al. 1511.07434] for global fit of leptonic 4-fermion operators

as well as the bosonic operators

$$\mathcal{O}_{2W} = -\frac{1}{2} (D^{\mu} W^a_{\mu\nu})^2$$
$$\mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^2$$

W and Y parameters of [Barbieri et al. hep-ph/0405040] $\sim 10^{-3}$ precision



Universal Scenario

i.e. oblique corrections

Assuming that New Physics is "universal"

affects only gauge boson self-energies

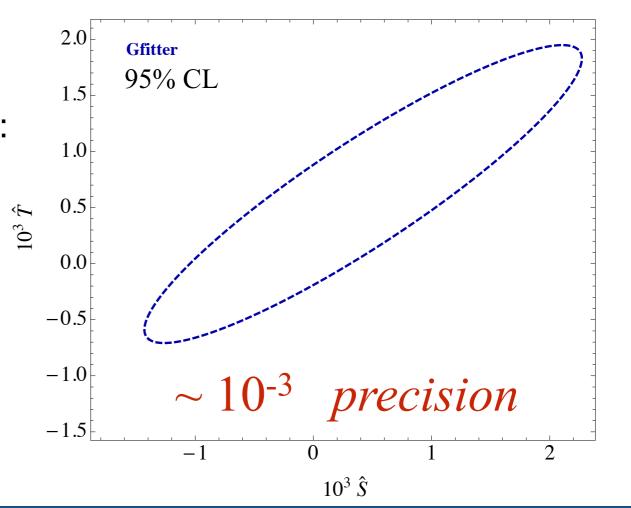
$$\Pi_V(q^2) \simeq \Pi_V(0) + q^2 \Pi'_V(0) + \frac{(q^2)^2}{2!} \Pi''_V(0) + \cdots$$

 $\langle V_{\mu}(-q)V_{\nu}'(q)\rangle \propto \Pi_{VV'}(q^2)$

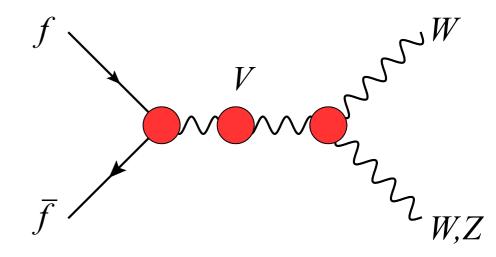
[Altarelli and Barbieri '91, Peskin and Takeuchi '92, Barbieri et al. hep-ph/0405040]

At dim-6 in SM EFT only these are generated:

$$\begin{array}{rcl}
g^{-2}\widehat{S} &= & \Pi'_{W_3B}(0) \\
g^{-2}M_W^2\widehat{T} &= & \Pi_{W_3W_3}(0) - \Pi_{W^+W^-}(0) \\
2g'^{-2}M_W^{-2}Y &= & \Pi''_{BB}(0) \\
2g^{-2}M_W^{-2}W &= & \Pi''_{W_3W_3}(0) \\
S &= 4s_W^2\widehat{S}/\alpha \approx 119\,\widehat{S}, \, T = \widehat{T}/\alpha \approx 129\,\widehat{T}
\end{array}$$



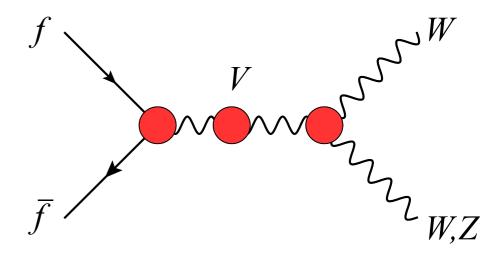
After LEP-1 bounds are imposed, in the SMEFT there are 3 unbounded directions relevant to VV production.



It is always possible to shift these corrections to anomalous triple gauge couplings.

aTGC $\delta g_{1,z}, \ \delta \kappa_{\gamma}, \ \lambda_z$

After LEP-1 bounds are imposed, in the SMEFT there are 3 unbounded directions relevant to VV production.



It is always possible to shift these corrections to anomalous triple gauge couplings.

$$\begin{aligned} \text{TGC} \quad & \delta g_{1,z}, \ \delta \kappa_{\gamma}, \ \lambda_{z} \\ \text{[Hagiwara et al '87]} \\ \mathcal{L}_{\text{tgc}} &= ie \left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) A_{\nu} + ie \frac{c_{\theta}}{s_{\theta}} \left(1 + \delta g_{1,z} \right) \left(W_{\mu\nu}^{+} W_{\mu}^{-} - W_{\mu\nu}^{-} W_{\mu}^{+} \right) Z_{\nu} \\ &+ ie (1 + \delta \kappa_{\gamma}) A_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} + ie \frac{c_{\theta}}{s_{\theta}} \left(1 + \delta \kappa_{z} \right) Z_{\mu\nu} W_{\mu}^{+} W_{\nu}^{-} \\ &+ i \frac{\lambda_{z} e}{m_{W}^{2}} \left[W_{\mu\nu}^{+} W_{\nu\rho}^{-} A_{\rho\mu} + \frac{c_{\theta}}{s_{\theta}} W_{\mu\nu}^{+} W_{\nu\rho}^{-} Z_{\rho\mu} \right] , \end{aligned}$$

Assumptions: CP conservation, no vertex corrections, no oblique corrections

In [Hagiwara et al '87] this description for $e^+e^- \rightarrow W^+W^-$ is based on an on-shell amplitude decomposition in terms of form factors and pseudo-observables.

a

aTGC
$$\delta g_{1,z}, \ \delta \kappa_{\gamma}, \ \lambda_{z}$$

In the SM EFT these are given by 3 combinations of Wilson coefficients.

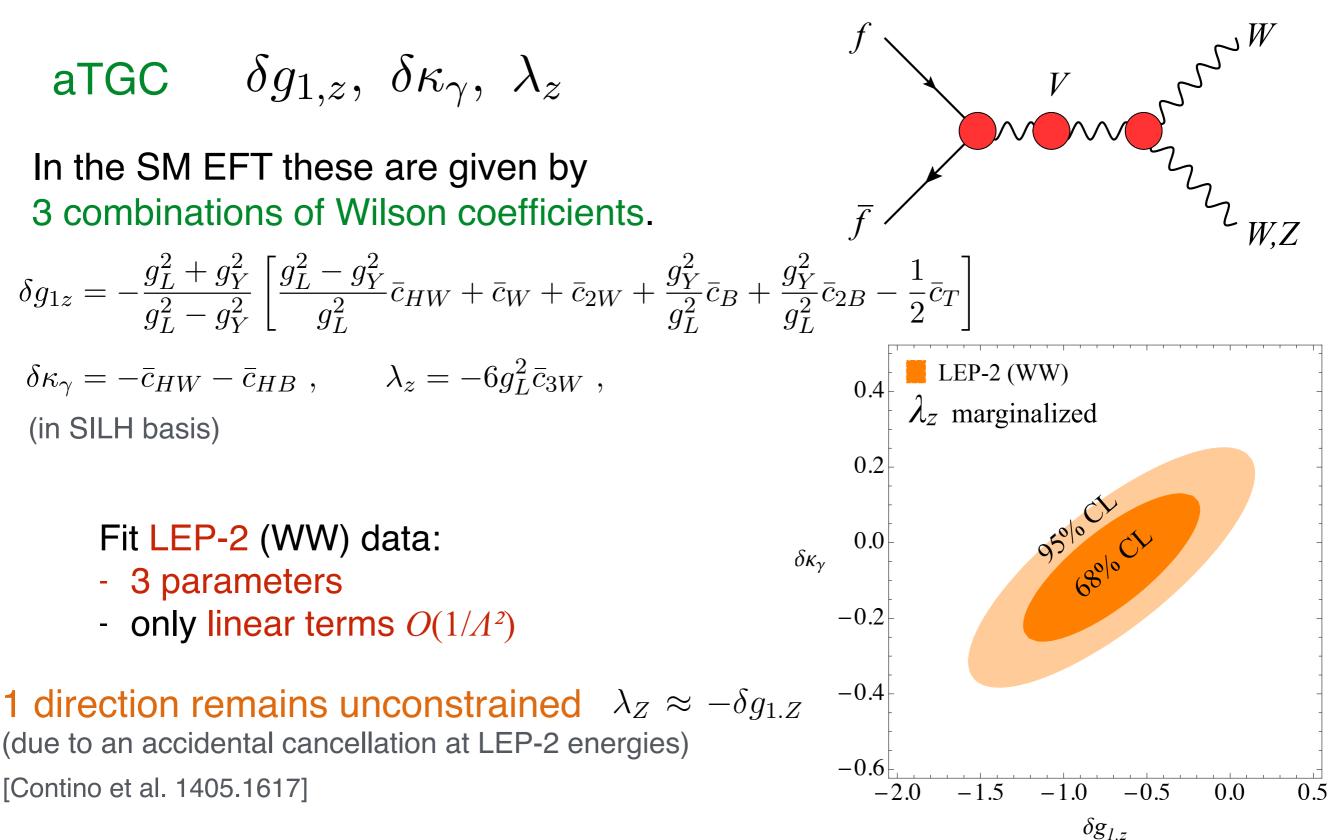
$$\delta g_{1z} = -\frac{g_L^2 + g_Y^2}{g_L^2 - g_Y^2} \left[\frac{g_L^2 - g_Y^2}{g_L^2} \bar{c}_{HW} + \bar{c}_W + \bar{c}_{2W} + \frac{g_Y^2}{g_L^2} \bar{c}_B + \frac{g_Y^2}{g_L^2} \bar{c}_{2B} - \frac{1}{2} \bar{c}_T \right]$$

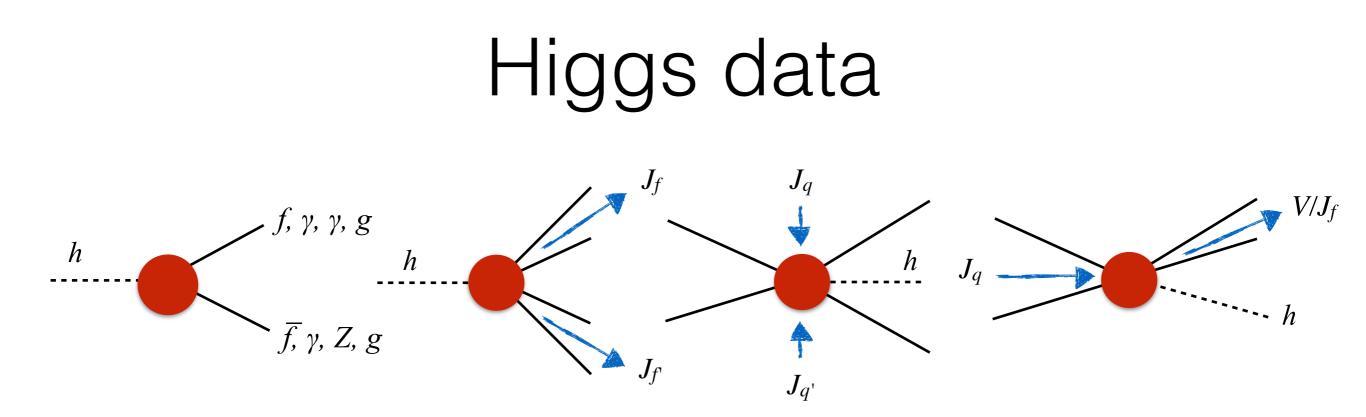
$$\delta \kappa_{\gamma} = -\bar{c}_{HW} - \bar{c}_{HB} , \qquad \lambda_z = -6g_L^2 \bar{c}_{3W} ,$$

(in SILH basis)

W,Z

V





As done for Z boson at LEP-1 (but more complex processes)

- 1 Unfold soft QED/QCD (and relevant EW) radiation
- 2 Extract a set of pseudo-observables from total rates and differential distributions
- 3 Match to SM EFT and extract bounds / combine with EW data

At Run-1 the PO used were the kappas:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Virtues: Clean SM limit $(k \rightarrow 1)$, well-def. exp & th, quite general.

At Run-1 the PO used were the kappas:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Now we want to **go beyond** \rightarrow PO for kinematical distributions too Virtues: Clean SM limit (k \rightarrow 1), well-def. exp & th, quite general.

At Run-1 the PO used were the kappas:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Now we want to **go beyond** \rightarrow PO for kinematical distributions too Virtues: Clean SM limit (k \rightarrow 1), well-def. exp & th, quite general.

Start from on-shell correlation function, e.g. $h \to 4\ell$: $\langle 0 | \mathcal{T} \{ J_f^{\mu}(x), J_{f'}^{\nu}(y), h(0) \} | 0 \rangle$

At Run-1 the PO used were the kappas:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Now we want to **go beyond** \rightarrow PO for kinematical distributions too Virtues: Clean SM limit (k \rightarrow 1), well-def. exp & th, quite general.

Start from on-shell correlation function, e.g. $h \rightarrow 4\ell$: $\langle 0 | \mathcal{T} \{ J_f^{\mu}(x), J_{f'}^{\nu}(y), h(0) \} | 0 \rangle$

Lorentz structures decomposition

$$\mathcal{A} = i \frac{2m_{Z}^{2}}{v_{F}} (\bar{e}\gamma_{\alpha}e)(\bar{\mu}\gamma_{\beta}\mu) \times \\ \left[F_{L}^{e\mu}(q_{1}^{2}, q_{2}^{2})g^{\alpha\beta} + F_{T}^{e\mu}(q_{1}^{2}, q_{2}^{2}) \frac{q_{1} \cdot q_{2}}{m_{Z}^{2}} \frac{g^{\alpha\beta} - q_{2}^{\alpha}q_{1}^{\beta}}{m_{Z}^{2}} + F_{CP}^{e\mu}(q_{1}^{2}, q_{2}^{2}) \frac{\varepsilon^{\alpha\beta\rho\sigma}q_{2\rho}q_{1\sigma}}{m_{Z}^{2}} \right]$$

At Run-1 the PO used were the kappas:

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Now we want to **go beyond** \rightarrow PO for kinematical distributions too Virtues: Clean SM limit (k \rightarrow 1), well-def. exp & th, quite general.

Start from on-shell correlation function, e.g. $h \to 4\ell$: $\langle 0 | \mathcal{T} \{ J_f^{\mu}(x), J_{f'}^{\nu}(y), h(0) \} | 0 \rangle$

Lorentz structures decomposition

$$\begin{aligned} \mathcal{A} = & i \frac{2m_{Z_{k}}^{2}}{v_{F}} (\bar{e}\gamma_{\alpha}e)(\bar{\mu}\gamma_{\beta}\mu) \times \\ & \left[F_{L}^{e\mu}(q_{1}^{2}, q_{2}^{2})g^{\alpha\beta} + F_{T}^{e\mu}(q_{1}^{2}, q_{2}^{2}) \frac{q_{1} \cdot q_{2}}{m_{Z}^{2}} \frac{g^{\alpha\beta} - q_{2}^{\alpha}q_{1}^{\beta}}{m_{Z}^{2}} + F_{CP}^{e\mu}(q_{1}^{2}, q_{2}^{2}) \frac{\varepsilon^{\alpha\beta\rho\sigma}q_{2\rho}q_{1\sigma}}{m_{Z}^{2}} \right] \end{aligned}$$

$$F_X(q_1^2, q_2^2) = \sum_V \frac{(\text{const})_{2V}}{(q_1^2 - m_V^2)(q_2^2 - m_V^2)} + \frac{(\text{const})_{1V}}{(q_{1,2}^2 - m_V$$

Fit to Higgs data

Assuming Minimal Flavor Violation:

After imposing EWPT bounds, at dim-6 in the SM EFT, Higgs data is affected by 9 independent linear combinations of coefficients.

[Corbett et al. 2013; J. Elias-Miro et al. 2013; Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

Let us call these combinations as:

'Higgs basis' [LHCHXSWG 2016]

[Falkowski, Gonzalez-Alonso, Greljo, D.M. 1508.00581]

$$\left(\delta c_{z}, c_{\gamma\gamma}, c_{z\gamma}, c_{gg}, \delta y_{u}, \delta y_{d}, \delta y_{e}, \delta g_{1,z}, \delta \kappa_{\gamma}\right)$$

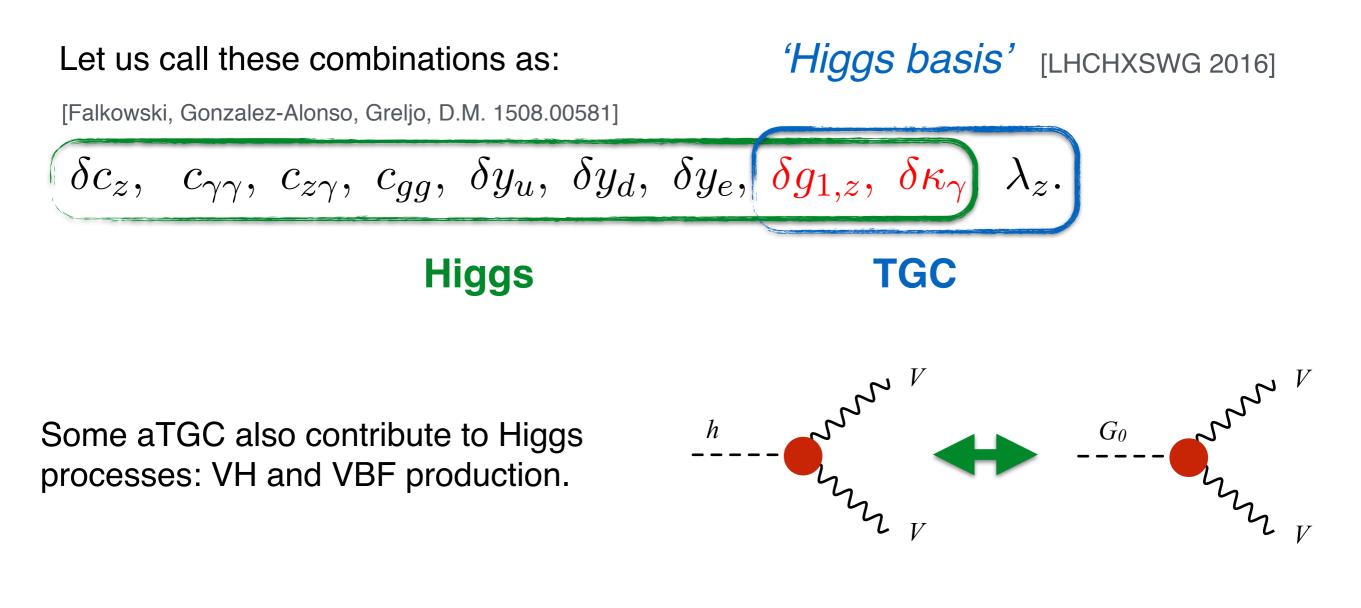
Higgs

Fit to Higgs data

Assuming Minimal Flavor Violation:

After imposing EWPT bounds, at dim-6 in the SM EFT, Higgs data is affected by 9 independent linear combinations of coefficients.

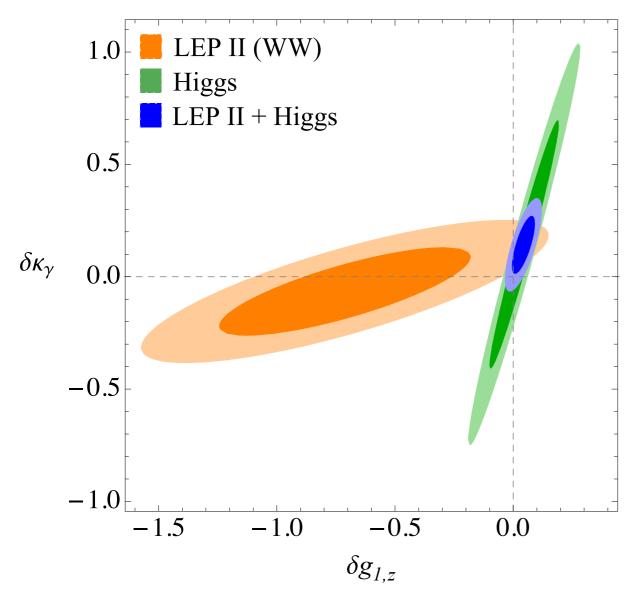
[Corbett et al. 2013; J. Elias-Miro et al. 2013; Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]



Global fits

Writing the bounds in terms of aTGC:

The other 8 coefficients have been marginalised.



LEP II data alone suffers from a flat direction in the TGC fit. [Contino et al. 1405.1617]

+

Higgs data (mainly via VH and VBF production) is sensitive to a different direction.

[Falkowski 1505.00046]

Together they provide strong and robust constraints on the TGC.

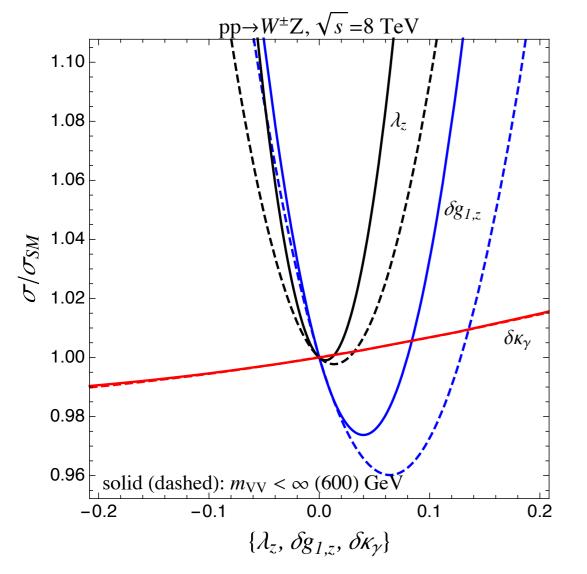
(linear fit \simeq quadratic fit)

Falkowski, Gonzalez-Alonso, Greljo, D.M. PRL 116, 011801 (2016) [1508.00581]

The role of LHC WW/WZ data

The validity of the EFT (aTGC) analysis is not obvious See talk on friday - Florian Goertz and D.M.

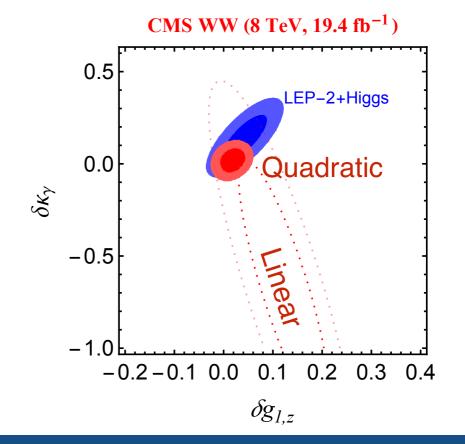
$$\sigma = \sigma^{\rm SM} + \sum_{i} \left(\frac{c_i^{(6)}}{\Lambda^2} \sigma_i^{(6 \times \rm SM)} + \text{h.c.} \right) + \sum_{ij} \frac{c_i^{(6)} c_j^{(6)*}}{\Lambda^4} \sigma_{ij}^{(6 \times 6)} + \sum_{j} \left(\frac{c_j^{(8)}}{\Lambda^4} \sigma_j^{(8 \times \rm SM)} + \text{h.c.} \right) + \dots$$



Falkowski, Gonzalez-Alonso, Greljo, D.M., Son [1609.06312]

Due to SM vs. BSM helicity structure and large E, the (dim-6)² terms dominate.

Expected large sensitivity to dim-8 terms in general EFT approach.



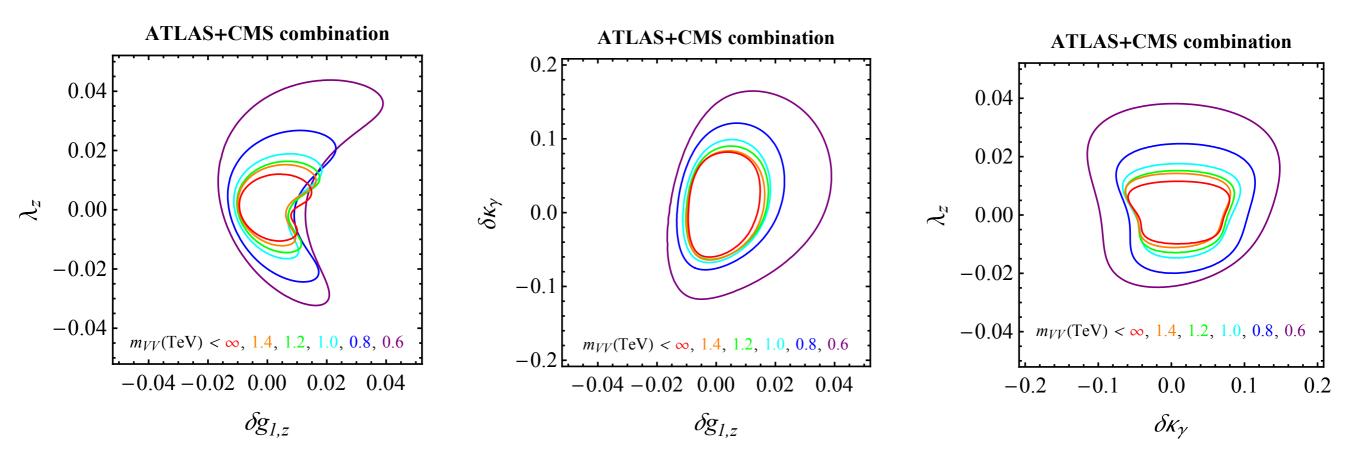
The role of LHC WW/WZ data

Set a cut for the high-mass region** $m_{VV} < m_{VV}^{\max}$

Perform different fits for different cut values.

We fit a selection of 8 TeV (20fb⁻¹) +13 TeV (3.2fb⁻¹) ATLAS and CMS WW and WZ data, including quadratic terms.

Falkowski, Gonzalez-Alonso, Greljo, D.M., Son [1609.06312]

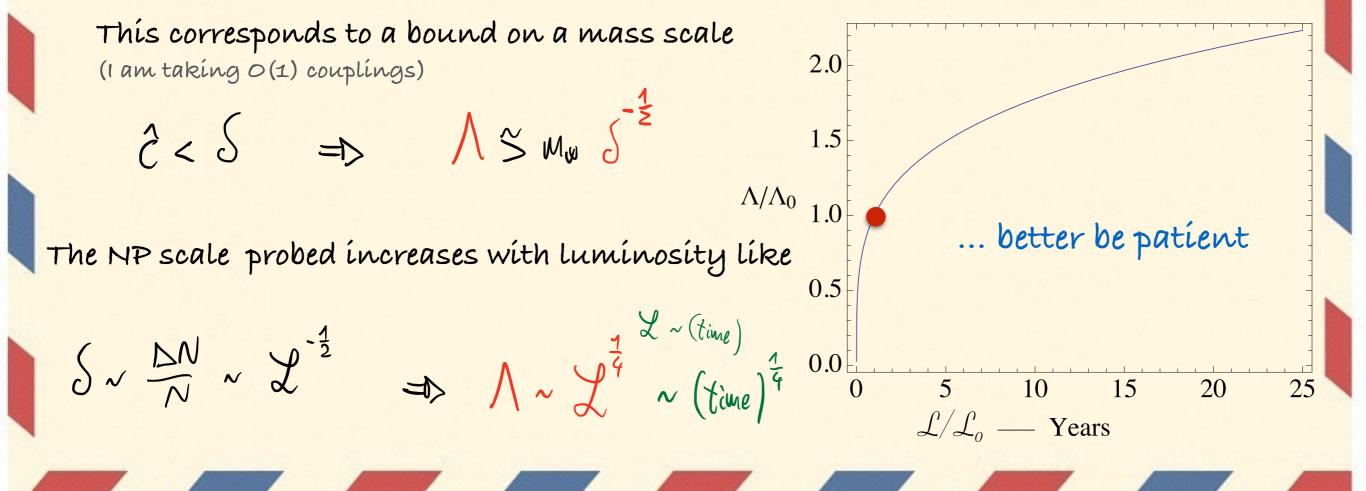


Prospects

Explore high scales via precision measurements

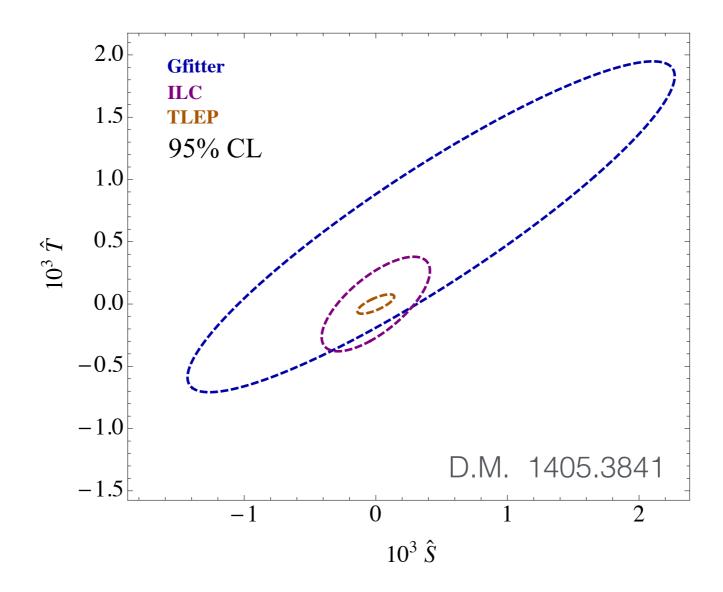
Take an observable which we can use to constrain some EFT parameter ĉ

 $\mathcal{G} = \mathcal{G}_{SH} \left(1 + K \frac{\mathcal{M}_{w}^{2}}{\Lambda^{2}} + \mathcal{O}(\Lambda^{-4}) \right) \quad \text{with precision } \delta.$



Z-pole

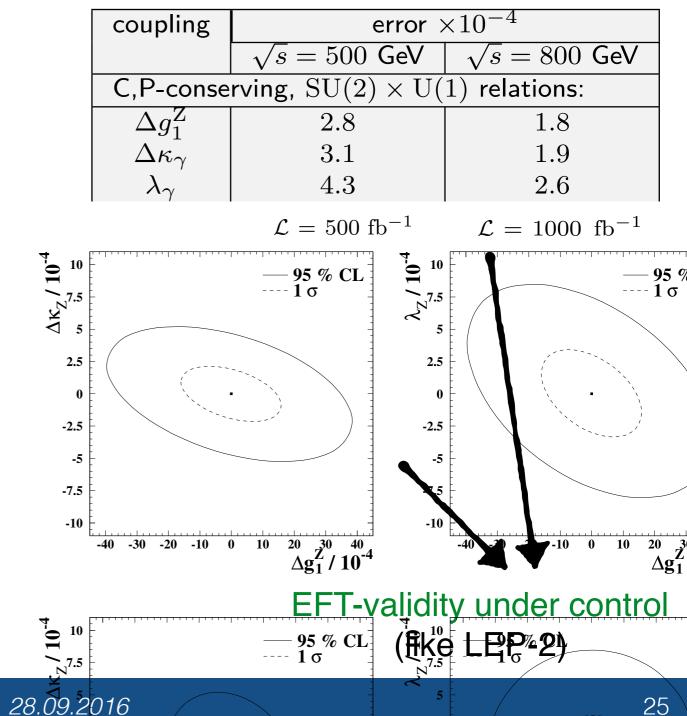
ILC / GigaZ [Snowmass, Gfitter 1310.6708] $\sim few \times 10^{-4}$ precision **TLEP / TeraZ** [TLEP design study group 1308.6176] $\leq 10^{-4}$ precision



aTGC

ILC [ILC TDR 1306.6352]

$\sim few \times 10^{-4}$ precision



HL-LHC

[Gianotti, Mangano, Virdee et al. hep-ph/0204087]

Only 1 parameter varied at a time

Coupling	14 TeV 14 TeV		28 TeV	28 TeV		
	$100 {\rm ~fb}^{-1}$	1000 fb^{-1}	$100 {\rm ~fb^{-1}}$	1000 fb^{-1}		
λ_{γ}	0.0014	0.0006	0.0008	0.0002		
λ_Z	0.0028	0.0018	0.0023	0.009		
$\Delta \kappa_{\gamma}$	0.034	0.020	0.027	0.013		
$\Delta \kappa_Z$	0.040	0.034	0.036	0.013		
g_1^Z	0.0038	0.0024	0.0023	0.0007		

Issues with EFT validity

30 TeV: Higher energy, higher NP reach from direct searches

David Marzocca

Conclusions

SM Effective Theory

- Allows interpretation of precision data in a well defined framework
- Large number of parameters but large number of observables allows to put strong constraints via global fits.
- By construction, better suited for low energy experiments, (Z pole, Higgs decays, e⁺ e⁻ machine)
 less for LHC high-p_T processes
 (dijet, dilepton, diboson production, etc..)
- Progress in exploring NP by increasing luminosity is very slow. Unlikely to discover NP via precision measurements, rather a crucial path for understanding the structure of NP.

Thank you!

Input parameters

The EW sector of the SM depends on 3 parameters: g, g', v

Extracted from inputs, usually: G_{μ} , M_Z , $\alpha(0)$

e.g.
$$G_{\mu} = \frac{1}{\sqrt{2}v^2} \to v^2 = \sqrt{2}G_{\mu}$$

Effective operators also contribute to these inputs: redefine SM parameters (and fields) to reabsorb this unphysical shift.

$$G_{\mu} = \frac{1}{\sqrt{2}v^2} + \frac{k_i c_i^{(6)}}{\Lambda^2} \to v^2 = f(G_{\mu}, c_i^{(6)})$$

Express SM predictions (and EFT dependence) in terms of physical inputs.

Global fits

Falkowski, Gonzalez-Alonso, Greljo, D.M. PRL 116, 011801 (2016) [1508.00581]

We performed a global fit of Higgs (8TeV) + LEP-2 (WW) using these 10 parameters (assuming MFV).

Shown here in SILH' basis (others in the paper) Pomarol, Riva [1308.2803]

We impose exact EWPO bounds:

 $s_T = s_{\ell\ell} = s_{Hf} = s'_{Hf} = 0$ $s_W + s_B = 0$

 $s_{H} = 0.02 \pm 0.17$ $\frac{1}{2} (s_{W} - s_{B}) = 0.37 \pm 0.30$ $s_{HW} = -0.69 \pm 0.43$ $s_{HB} = -0.68 \pm 0.42$ $s_{BB} = 0.094 \pm 0.015$ $s_{GG} = -0.0052 \pm 0.0027$ $\hat{s}_{u} = 0.59 \pm 0.33$ $\hat{s}_{d} = -0.23 \pm 0.22$ $\hat{s}_{e} = -0.10 \pm 0.15$ $s_{3W} = 0.63 \pm 0.29$

(full correlation matrix in the paper)