

Associated production of top quarks with the Higgs boson

Precision2016, Quy Nhon (Viet Nam) - 29/09/2016

Nicolas Chanon - IPHC Strasbourg (France), CNRS/IN2P3 for the ATLAS and CMS Collaboration

Outline

ttH production : direct probe of top Yukawa coupling

tHq production : probing the sign of top Yukawa coupling

Flavour changing neutral current (FCNC) tH coupling

ttH production at 13 TeV

Searches for ttH production

ttH,H→bb: 58.1%

- High cross section x BR, but multi-jet background
- ATLAS : 2015 + 2016 data
- CMS : 2015 data

ttH,H→γγ : 0.23%

- Clean signature thanks to excellent mass resolution, but small branching ratio
- ATLAS : 2015 + 2016 data
- CMS : 2015, 2016 data

ttH multilepton : $H \rightarrow WW$ (21.5%), $H \rightarrow ZZ$ (2.6%) and $H \rightarrow \tau\tau$ (6.3%)

- $H \rightarrow WW$, $H \rightarrow ZZ$ semi-leptonic and leptonic decays
- Lower rate than $H \rightarrow bb$, low background final state
- ATLAS : 2015 + 2016 data
- CMS : 2015 + 2016 data

ATLAS-CONF-2016-080

HT distribution used to normalise backgrounds in control regions

ATLAS ttH,H→bb

ATLAS-CONF-2016-080

Analysis strategy: two-step multivariate technique

- Reconstruction BDT : Match reconstructed jets to Higgs and top quark jets
- NN/BDT output : includes previous BDT + kinematic variables
- All regions included in final likelihood fit

Theory uncertainties on ttbar + \geq 1b is $\Delta\mu$ ~0.5, already dominates the measurement

CMS ttH,H→bb **CMS HIG-16-004**

Analysis targeting lepton+jets and dileptons

- **I+jets:** =1 lepton, \geq 4 jets, \geq 3 b-tag (4j 2b not in the fit)
 - Includes **boosted jets** for the first time (fat jet substructure)
- **2I:** 2 opposite sign lepton, \geq 3 jets, \geq 2 b-tag

S/B=0.035, S/IB=0.456

S/B=0.019, S/IB=0.204

CMS ttH,H→bb CMS HIG-16-004

 W^{-}

W

W

12.9 fb⁻¹ (13 TeV)

Pre-fit, μ=

+ Data ∎ttH

Η

g 000000

Events

160

140

CMS Preliminary

Targeting 2 lepton same-sign (2lss) and ≥3 leptons (3l)

- 2 same sign leptons: ≥4 jets, ≥1 b-tag
- **3 leptons:** ≥ 2 jets, ≥ 1 b-tag
- Backrounds: tt+W/Z, tt+jets (same-sign required to reduce Drell-Yan and ttZ)
- Background normalisation from control region: loosened identification (fakes), Z→II (mis-charge = "flips", 2lss only)

CMS ttH multilepton CMS HIG-16-022

ATLAS-CONF-2016-058

ATLAS Simulation Preliminary

2ť0Thad eu

Background composition

\s = 13 TeV

2ť0Thad ee

 $2\ell 1\tau_{had}$

QMisReco 🔲 Other

 $2\ell 0\tau_{had} \mu\mu$

 $t\overline{t}(Z/\gamma^*)$

Non-prompt 🥅 Diboson

ATLAS analysis: 4 channels

- **2I same sign (ee, eµ, µµ), no ⊤ had:** ≥5 jets, ≥1 b-tag
- 2I same sign, 1 т had : ≥4 jets, ≥1 b-tag
- **3I:** \geq 4 jets, \geq 1 b-tag ; or \geq 3 jets, \geq 2 b-tag
- **4I:** ≥2 jets, ≥1 b-tag
- Similar method to CMS for background measurement
- Fake τ from simulation, normalised to control region
- Main systematic uncertainties : Fakes and flips $\Delta\mu{\sim}0.6$

ATLAS, CMS H→γγ analysis ATLAS-CONF-2016-067, CMS HIG-16-020

CMS ttH,H→γγ CMS HIG-16-020

2 ttH categories: hadronic and leptonic

- Tighten photon pT/m requirement relative to inclusive categories (targeting ggh production)
- Control region with inverted photonId is used to predict expected background for optimisation

ttH hadronic tag: 0

12.9 fb⁻¹ (13 TeV)

Combined $\pm 1\sigma$

α=μ_{SM}

m_н Profiled

μ_{νн} = 1

 $\widehat{\boldsymbol{\mu}}_{\text{combined}}$ = 0.95 $^{+0.21}_{-0.18}$

Per category $\pm 1\sigma$

lepton, ≥5 jets, ≥1 b-tag

ttH leptonic tag: ≥1

ttH hadronic/leptonic combined: µ=1.9^{+1.5}-1.2 measured simultaneously with other production mechanisms

CMS Preliminary

0.77 +0.25

1.61 +0.9

1.91^{+1.5}

 μ_{ggH}

 μ_{VBF}

 $\mu_{\mu\mu}$

 Measurement is dominated by statistical uncertainties

ATLAS ttH, $H \rightarrow yy$ ATLAS-CONF-2016-067

2 ttH categories: hadronic and leptonic

- Control region with inverted photonId
 - ttH hadronic/leptonic combined: µ=-0.25+1.26-0.99 measured simultaneously with other production mechanisms (ratio WH/ZH assumed as SM) - Measurement is dominated by statistical

uncertainties

Data

Backgrourd Fit

Signal + Eackground Fit

SM Signa + Backgound

120

130

Events / GeV

10

6

110

ttH summary and projections

Projections at HL-LHC L=3000 fb⁻¹

CMS-NOTE-13-002

- Extrapolated from 8 TeV first measurements, same syst.
- Δκt: from H→γγ and H→bb:
 10% (7% if half theory uncert.)

ATLAS PHYS-PUB-2014-012

- ttH,H $\rightarrow\gamma\gamma$ 1I,2I only, same extrapolation
- Similar experimental sensitivity

CMS expected precision on top - Higgs coupling (%)

$L(fb^{-1})$	κ_{γ}	κ_W	κ _Z	κg	κ _b	κ _t	κ_{τ}	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7,10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

ATLAS expected precision on ttH signal strength (%)

l∼K+	_	$\Delta \hat{\mu}/\hat{\mu}$ (%)					
Jar	Production mode	Total	Statistical	Experimental	Theoretical		
	tīH	+21 -17	+13 -12	+5 -4	+17 -11		

tHq production and negative coupling

tHq at Run I

CMS JHEP 06 (2016) 177, ATLAS Phys. Lett. B 740 (2015) 222-242

CMS tHq 8 analyses carried out in same final states as ttH:

- $H \rightarrow \gamma \gamma$: background fit in leptonic channels, also done at ATI AS
- $H \rightarrow bb$: Use NN as discriminant in 3b/4b, e/µ categories
- **Multilepton**: Bayes classifier in 3I, eµ, µµ categories
- $H \rightarrow \tau \tau$: Fisher discriminant in eµt, µµt categories

 $pp \rightarrow tHq$ $t \rightarrow b l v$

CMS

95% CL limit on σ/σ_{Cl=1} 0 52 05 52

15

10

5

<u>з</u> _{/ер}

 $\mu^{\pm}\mu^{\pm}$

66

e±11±

tHq, H→bb at 13 TeV CMS HIG-16-019

Analysis performed with 2015 data:

- Jet assignment with a reconstruction BDT under tHq and ttbar hypotheses
- Signal / background discrimination with a classification BDT

=> Done for each benchmark point in the κ_t / κ_V plane

Top-Higgs coupling with FCNC

Searching for flavor changing neutral currents with $t \rightarrow (u)cH$

- Process arising only at the loop level in the standard model (forbidden by GIM mechanism)
- Very small branching ratio: any excess would be a clear sign of new physics

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$			$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$			$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$		10^{-5}
$t \to c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	$\sim 10^{-6}$	~ 10 ⁻⁹	$2 \cdot 10^{-6}$
$t \to cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \to cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}

Searches in ttbar production, followed by top FCNC decay with a Higgs boson

Anomalous tH FCNC production not pursued yet.

CMS tH FCNC, Run I

CMS TOP-13-017, TOP-14-019, TOP-14-020 (paper to appear soon)

CMS tH FCNC analyses :

- $H \rightarrow \gamma \gamma$: background fit in hadronic and leptonic channels
- H→bb: Reconstruction BDT, use NN as discriminant
- Multilepton: Cut based analysis

Limits of BR(t→(u)cH) at the 1% level or less (still

orders of magnitude above MSSM predictions)

19.7 fb⁻¹ (8TeV)

Multilepton

	$-\sigma$	$BR_{exp}(t \rightarrow Hc)$	$+\sigma$	$BR_{obs}(t \rightarrow Hc)$
trilepton	0.95	1.33	1.87	1.26
same-sign dilepton	0.68	0.93	1.26	0.99
combined	0.65	0.89	1.22	0.93

signal strength r at 95% CL CMS hadronic+leptonic channels Preliminary observed 10 expected H→vv 1σ 2 σ 10⁻¹ 0.2 0 0.8 0.4 0.6 1.2 1.4 B (t \rightarrow cH) [%]

H→bb

	$t \rightarrow cH$ channel	$t \rightarrow uH$ channel
Signal	73.9 ± 108.7 (stat.) ± 24.4 (syst.)	196.9 ± 87.3 (stat.) ± 59.1 (syst.)
Total background	6766 ± 136.0 (stat.) ± 947.2 (syst.)	$6636 \pm 118.6(stat.) \pm 796.3(syst.)$
Observed events	6840	6840
Expected limit	0.89%	0.85%
Observed limit	1.16%	1.92%

ATLAS tH FCNC Run I and projections JHEP 12 (2015) 061

Projections at HL-LHC L=3000 fb⁻¹

ATLAS-PHYS-PUB-2016-019

- Semi-leptonic ttbar decay, H→bb
- Reference scenario: tracker, muon $|\eta| < 4$
- Limits 50x better than at 8 TeV
- Approaching the range of 2HDM/MSSM predictions

	$t \rightarrow Hu$	$t \rightarrow Hc$	$t \rightarrow Hu + Hc$
Reference scenario	$1.2 \cdot 10^{-4}$	$1.0\cdot 10^{-4}$	$0.55 \cdot 10^{-4}$

Similar results BR(t→cH)~1,5.10⁻⁴
 with H→γγ from extrapolated 8 TeV
 results (ATLAS-PHYS-PUB-2013-012)

Conclusions

ttH production

- Sensitivity is already comparable or slightly better than Run I (able to reach ~40% precision on ttH signal strength with ATLAS and CMS 2015+2016 data), and results are consistent with Run I
- More data is needed to evaluate if the Run I "excess" (though compatible with SM) is not a fluctuation.

tHq searches with negative top-Higgs coupling

- Run I tHq sensitivity was able to exclude <~3 the tHq cross section for Ct=-1
- First 13 TeV measurements are being made available. H→bb sensitivity already comparable Run I dataset with 2015 data

Top quark FCNC decay with Higgs

- Analyses performed at 8 TeV reach BR < 0.4%.
- Run II analyses are ongoing.

2016 data taking period is still ongoing !

Back-up slides

CMS ttH,H→bb CMS HIG-16-004

Most sensitive channel : 6 jets, 3 b

			Process	tt rate up/down [%]	ttH rate up/down [%]
			Jet energy Scale	+11.3/-10.1	+7.7/-7.0
			Jet energy Resolution	-0.1/+0.1	-0.1/+0.1
			Pile-Up	-0.1/+0.0	+0.1/-0.2
Category	Observed	Expected	Electron Efficiency	+1.6/-1.6	+1.6/-1.6
4 jets, 3 b-tags	14.5	$18.6^{+8.2}_{-5.5}$	Muon Efficiency	+1.2/-1.2	+1.2/-1.2
4 jets, $>$ 4 b-tags high BDT output	35.7	$25.6^{+13.4}_{-8.1}$	b-Tag HF contamination	-3.5/+8.4	+0.2/+0.6
$A_{i} = 0.00$	0((-6.1	b-Tag HF stats (linear)	-6.4/+6.2	-5.3/+4.9
4 jets, \geq 4 b-tags low BD1 output	86.6	84.2-25.8	b-Tag HF stats (quadratic)	+4.2/-4.4	+3.3/-3.6
5 jets, 3 b-tags	16.0	$12.3^{+5.5}_{-3.6}$	b-Tag LF contamination	+7.1/-5.1	+5.5/-4.2
5 jota > 4 h tage high PDT sutput	7 5	10 2+5.6	b-Tag LF stats (linear)	-3.2/+6.5	-0.6/+1.1
5 jets, \geq 4 b-tags high BD1 output	7.5	$10.3_{-3.4}$	b-Tag LF stats (quadratic)	+0.5/+1.2	-0.8/+1.1
5 jets, \geq 4 b-tags low BDT output	35.2	$31.9^{+16.1}_{-9.9}$	b-Tag charm Uncertainty (linear)	-12.6/+16.9	-0.6/+0.7
\geq 6 jets, 2 b-tags	25.4	$41.1^{+21.1}_{-13.1}$	b-Tag charm Uncertainty (quadratic)	+1.4/-1.4	+0.0/-0.0
> 6 jets, 3 b-tags	9.6	$7.6^{+3.3}_{-2.2}$	Q2 scale $(t\bar{t}+lf)$	-1.9/+2.8	—
	0.0	-2.2	Q2 scale (tt+b)	-0.6/+0.9	_
\geq 6 jets, \geq 4 b-tags high BDT output	9.2	8.3_2.7	Q2 scale (tī+2b)	-0.5/+0.8	-
\geq 6 jets, \geq 4 b-tags low BDT output	15.4	$18.3^{+9.6}_{-5.8}$	Q2 scale (tī+bb)	-0.9/+1.3	_
> 4 jets, > 2 b-tags, boosted	7.5	$10.7^{+5.9}_{-2.5}$	Q2 scale $(t\bar{t}+c\bar{c})$	-1.6/+2.4	—
	1.0	<u>-3.5</u>	PS scale (tt+lf)	4.4 / - 8.7	—
lepton+jets combined	4.0	$4.1^{+1.0}_{-1.2}$	PS scale (tī+b)	-1.3/+0.8	—
			PS scale (tī+2b)	-1.0/+0.4	—
			PS scale (tī+bb)	-2.0/+1.3	—
			PS scale (tī+cī)	-4.3/+2.3	-

CMS TOP-16-017

- Background to ttH multi lepton searches
- At 13 TeV, cross section ~x4 relative to 8 TeV
- ttW with 2lss: BDT using event kinematics: **3.9** (2.60) observed (expected)
- ttZ with 3I,4I : counting events classified by jets/b-jets multiplicity: 4.6σ (5.8σ)

ATLAS arXiv:1609.01599

- ttW with 2lss (dimuon only), 3l: 2.2σ (1.0σ) observed (expected)
- ttZ with 3I (on-Z region included),4I : counting events classified by jets/b-jets multiplicity: 3.9σ (3.4σ)

ttH multilepton : dimuon ? ATLAS-CONF-2016-058, CMS HIG-16-022

