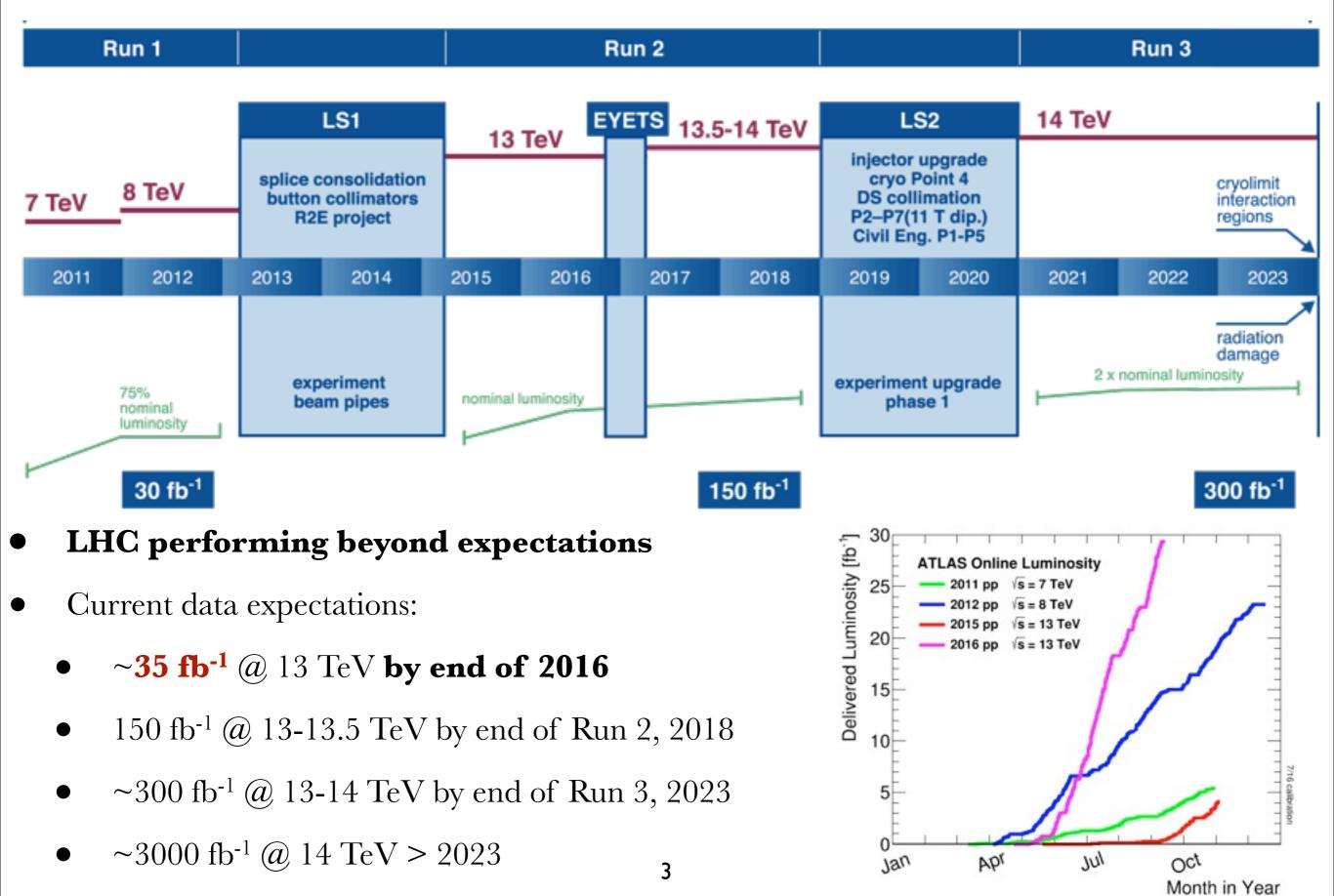


ATLAS expectations/improvements on Higgs from Run 2 (30-100 & 300 fb⁻¹)

Oana Boeriu University of Sheffield (UK)

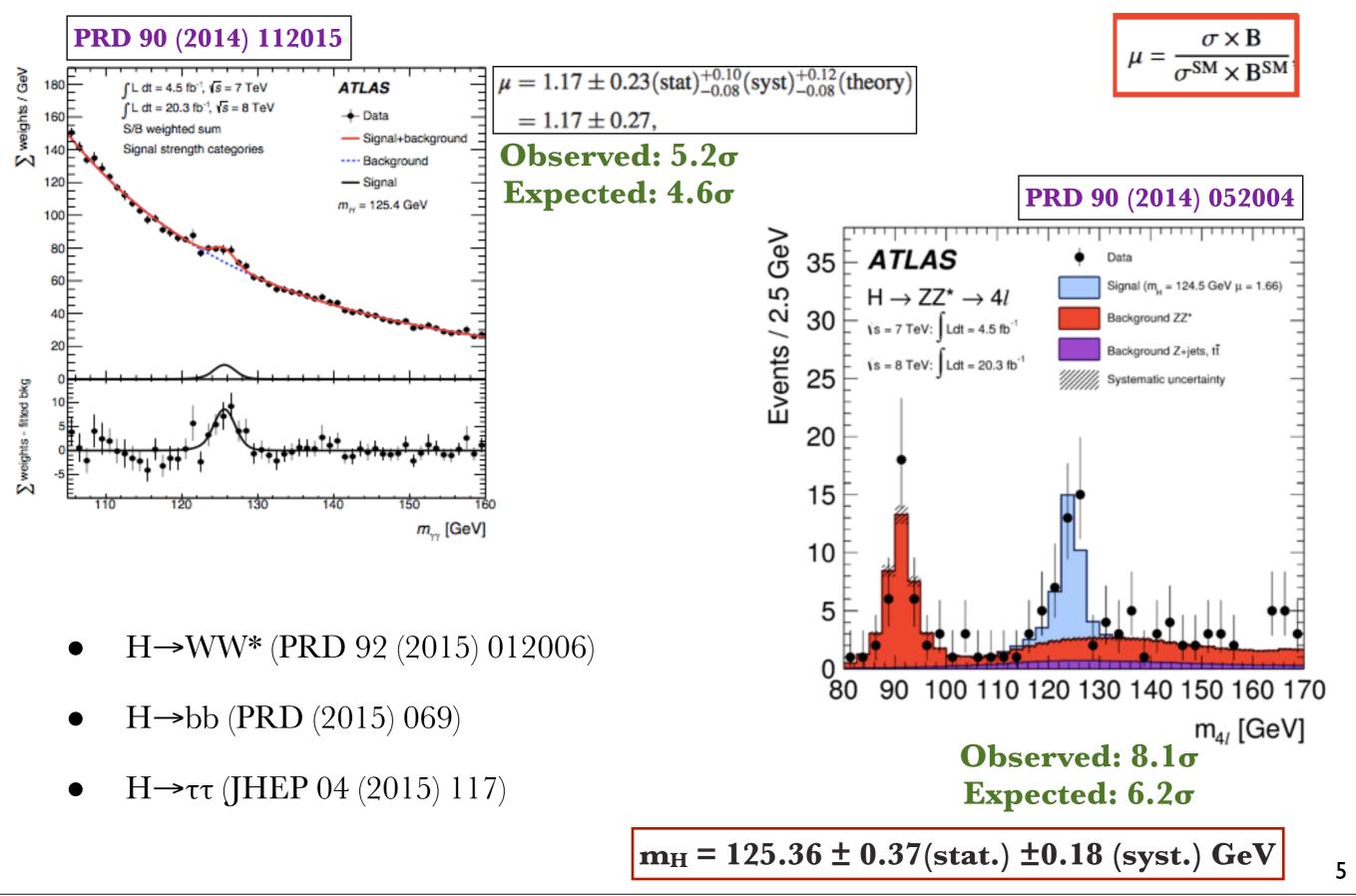
on behalf of the ATLAS Collaboration

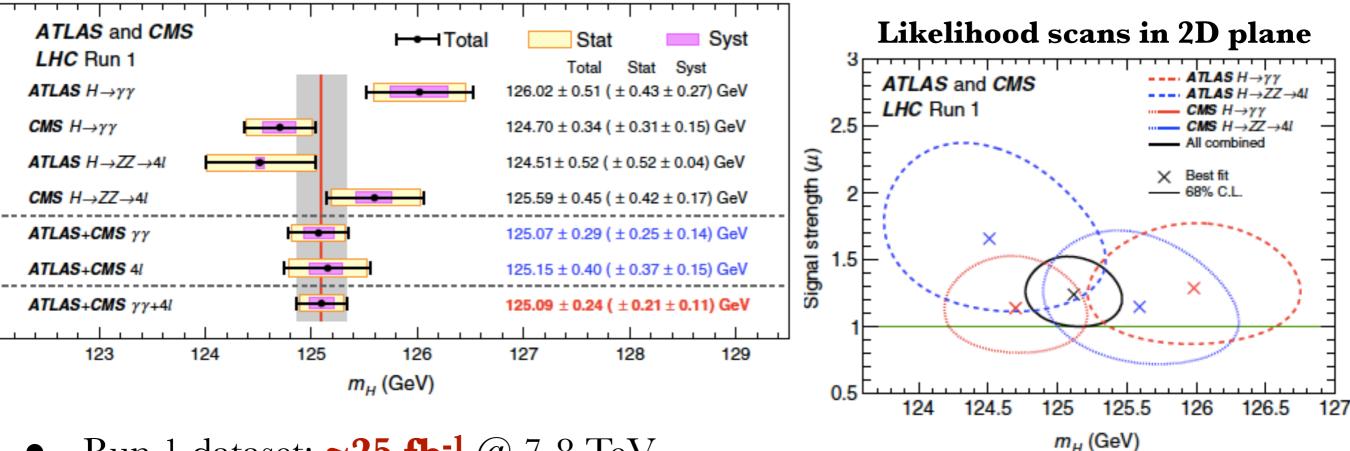
Precision Theory, Vietnam, 29/9, Higgs Physics Part 1



Outline

- LHC Schedule
 - Run 1 Higgs Results Highlights
- The ATLAS Detector in Run 2
- Run 2 Data Summary
 - Current Run 2 Higgs Boson Results
- Run 2 Physics Goals
 - Projections for Run 2 and Expected Results
- Summary


LHC Schedule

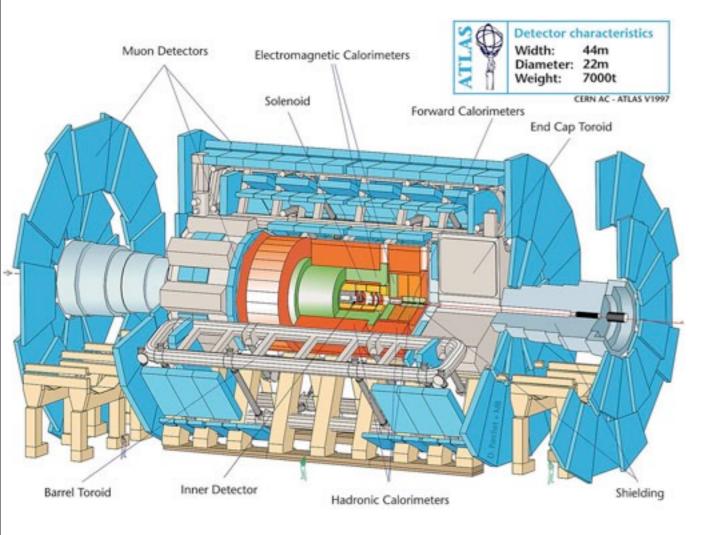

Run I Highlights

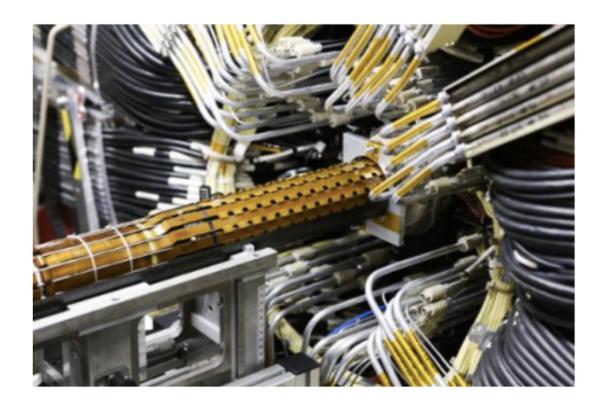
~25fb⁻¹

Run 1 H $\rightarrow\gamma\gamma$, H $\rightarrow4l$

Run 1 Higgs Combination Results

• Run 1 dataset: ~25 fb⁻¹ @ 7-8 TeV

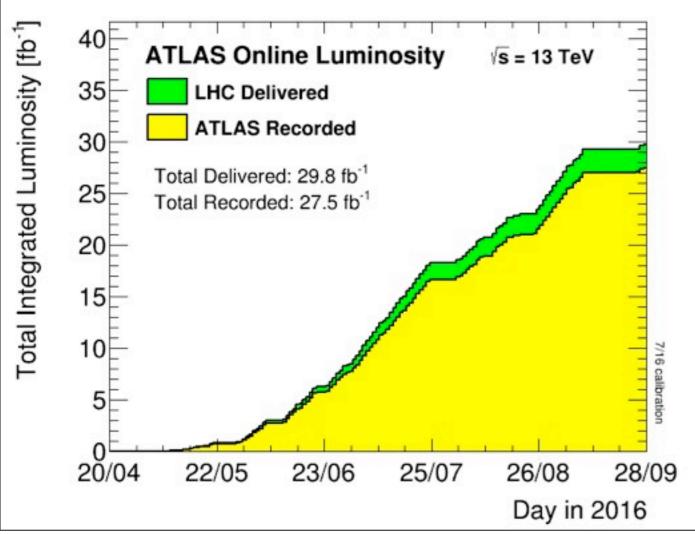

- Consistent with SM spin-CP expectation 0⁺
- Alternative models (spin 2, neg. parity...) excluded at > 99.9% CL

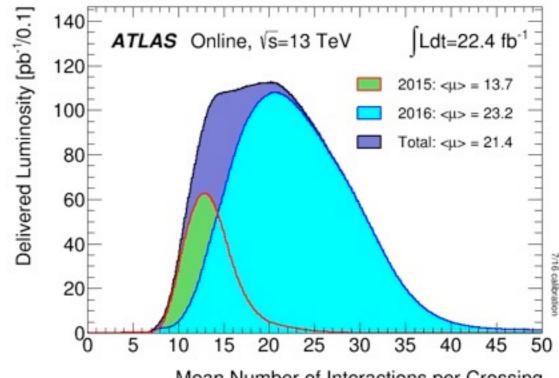

 m_{H} =125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV

Run II Results

~13-15fb⁻¹

The ATLAS Detector in Run 2




- The ATLAS detector has been significantly improved during the Long Shutdown 2013/2014:
 - **Infrastructure**: new beam pipe, improvements to magnets and cryogenic system
 - Consolidation: muon chambers and various repairs, upgrade of the Pixel L2 RO
 - <u>New detectors</u>: 4th silicon pixel layer (**IBL**) at 3.3 cm from interaction point
 - <u>Trigger/DAQ</u>: increase max L1 (hardware) rate from 75 kHz to 100 kHz and merge the two software trigger levels.

13 TeV Data Summary

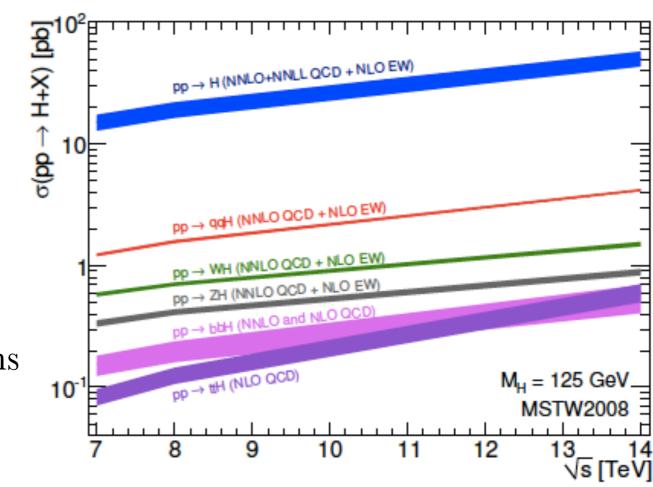
9

- Instantaneous luminosities above the design value $(1.2 \times 10^{34} \text{cm}^{-2} \text{ s}^{-1}) \Rightarrow$ pile-up above design values
 - 92.3% overall ATLAS data taking efficiency in 2016 (95% lately)
- 25 ns bunch-crossing scheme

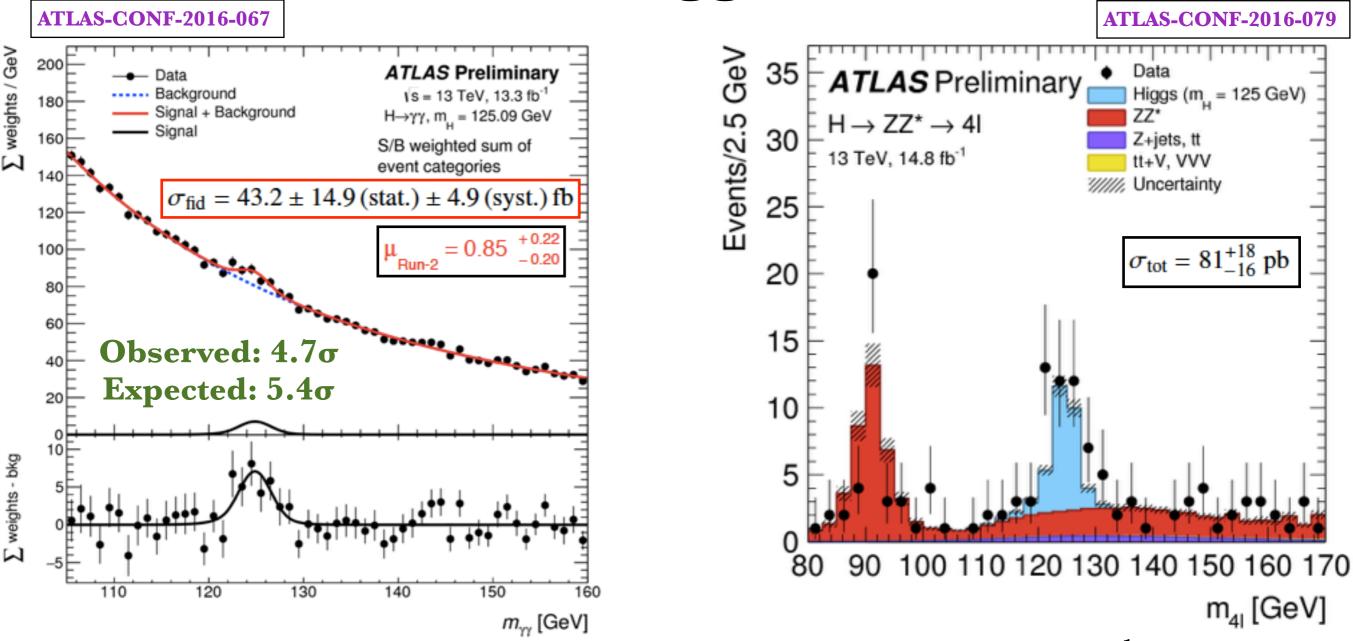
Mean Number of Interactions per Crossing

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	98.2%
SCT Silicon Strips	6.3 M	98.7%
TRT Transition Radiation Tracker	350 k	97.2%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	5200	100%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.7%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	383 k	99.8%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	357 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Chambers	383 k	96.6%
TGC Endcap Muon Chambers	320 k	99.6%
ALFA	10 k	99.9 %
AFP	188 k	98.8 %

Run 1 vs Run 2


- $\sqrt{s} = 8 \text{ TeV} \Rightarrow \sqrt{s} = 13 \text{ TeV}$:
- ggF cross-sections increased by 2.3 times
- ttH production increases by 3.9 times

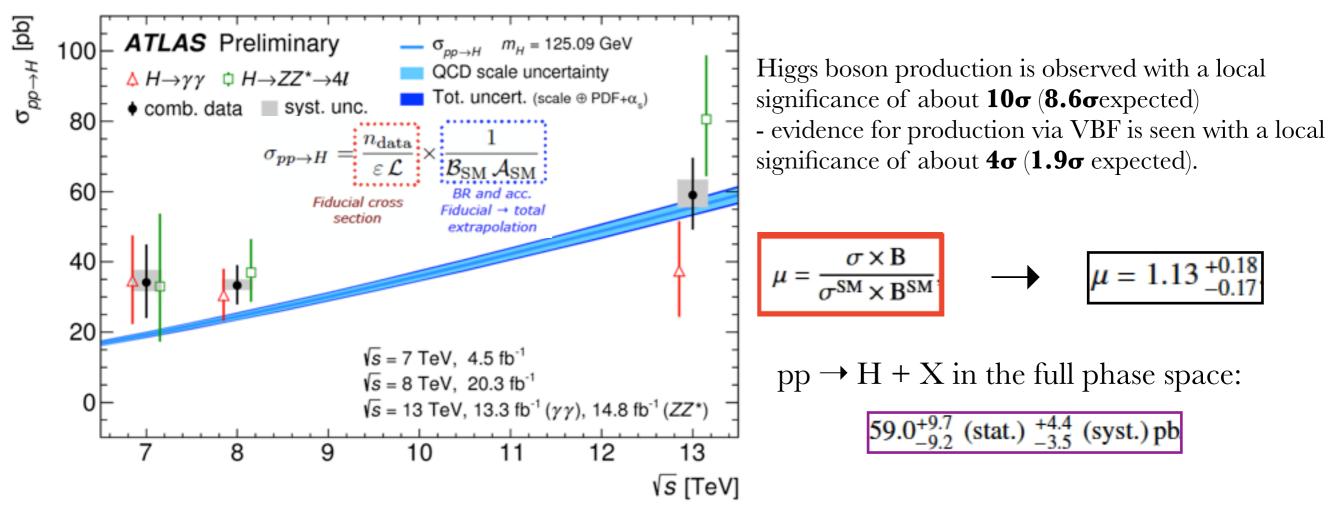
• Run 1 analyses (7-8 TeV):


- measurements of mass and couplings
- combined ATLAS+CMS results
- spin^{CP}, width, differential cross-sections

Run 2 analyses (13 TeV):

- fiducial / total cross-section at 13 TeV
- ttH, H→µµ

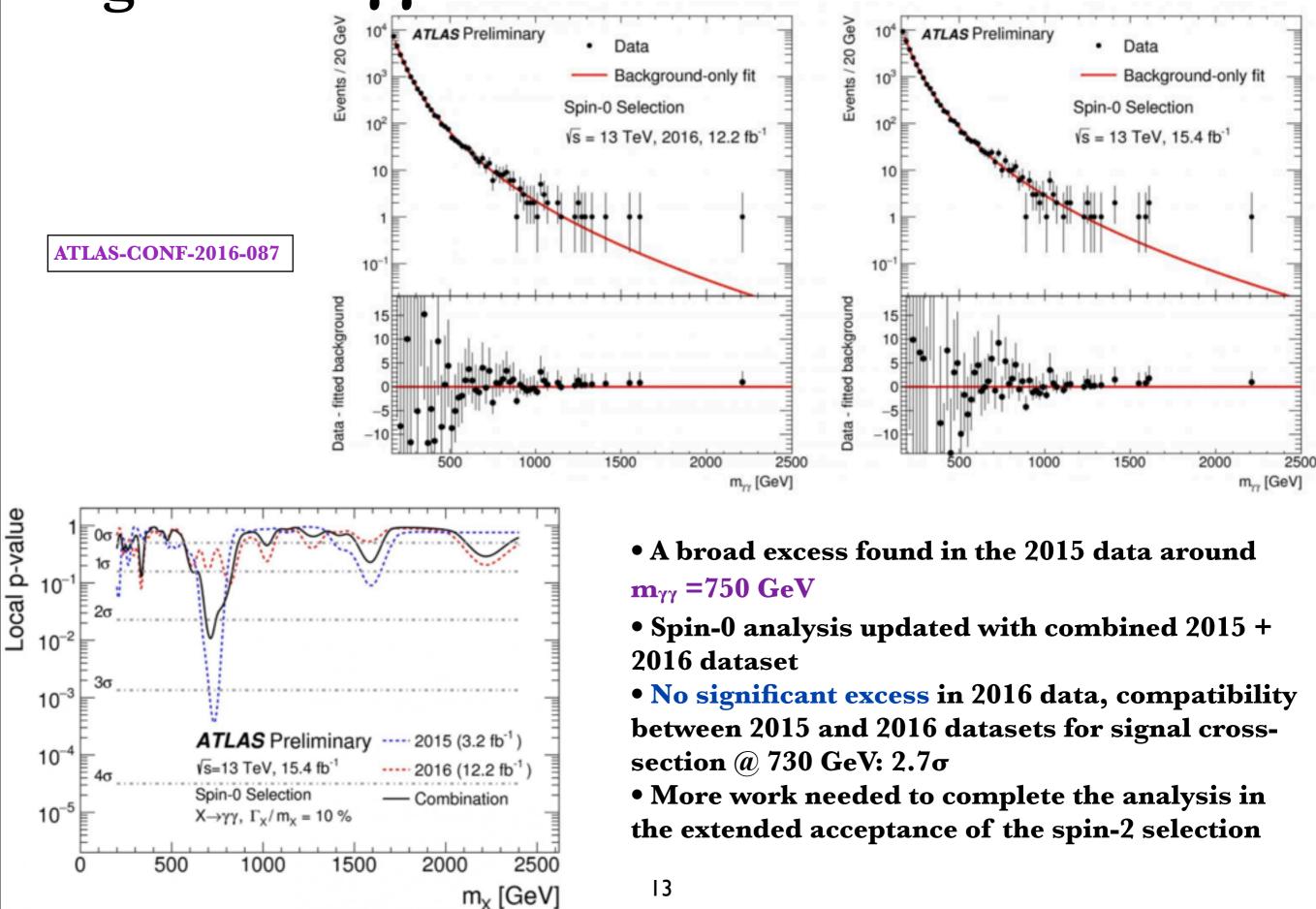
Current Run 2 Higgs Boson Results



• Higgs boson production is re-observed at 13 TeV with **yy** events (13.3 fb⁻¹) and **4***l* (14.8 fb⁻¹) using 13 TeV data.

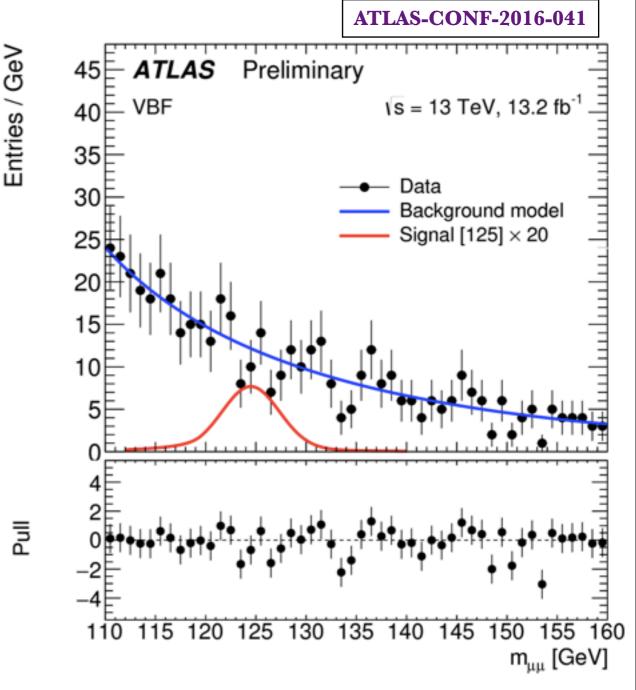
- all production modes targeted ggF, VBF, VH, ttH events
- $H \rightarrow \gamma \gamma$: dominant syst. unc.: photon energy scale and resolution & background choice bias (smaller than statistical uncertainties)
- H \rightarrow ZZ* \rightarrow 4*l*: dominant systematic uncertainty: luminosity and lepton SF (smaller than statistical uncertainty)

ATLAS-CONF-2016-081


Higgs boson production and decays in $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ final states

Combined results give observation of the Higgs boson at 13 TeV well above 50.

Decay channel		Total cross section $(pp \to H + X)$	()
	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \mathrm{TeV}$	$\sqrt{s} = 13 \mathrm{TeV}$
$H ightarrow \gamma \gamma$	35^{+13}_{-12} pb	$30.5^{+7.5}_{-7.4}$ pb	37^{+14}_{-13} pb
$H \to ZZ^* \to 4\ell$	33^{+21}_{-16} pb	37^{+9}_{-8} pb	$81^{+18}_{-16} \text{ pb}$
Combination	34 ± 10 (stat.) $^{+4}_{-2}$ (syst.) pb	$33.3^{+5.5}_{-5.3}$ (stat.) $^{+1.7}_{-1.3}$ (syst.) pb	$59.0^{+9.7}_{-9.2}$ (stat.) $^{+4.4}_{-3.5}$ (syst.) pb
SM predictions [7]	$19.2\pm0.9~\rm{pb}$	$24.5\pm1.1~\rm{pb}$	$55.5^{+2.4}_{-3.4} \text{ pb}$


High Mass yy Searches

- A very **rare decay** in the SM
 - Probe Yukawa-coupling to 2nd-gen fermions and mass dependence
 - Test of the Higgs coupling to leptons
- Signature: Very clean signature from di-muon final state, but Z/γ^{*}→µµ overwhelming irreducible background
- Search for peak in m_{µµ} spectrum over smoothly falling background
 - Categorize events according to VBF and ggF signature enriched

ATLAS	Upper limit x SM (expected)		
Run 1	7.1 (7.2)		
Run 2	4.4 (5.5)		
Combined Run 1 and Run 2	3.5 (4.5)		

Combination with Run I:

$$\mu_S = -1.5^{+2.1}_{-2.4}$$

Run II

300 fb⁻¹

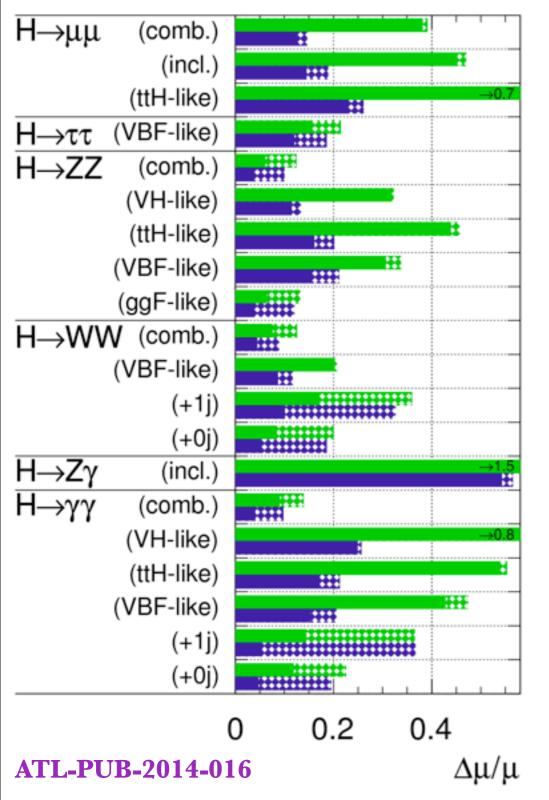
Run 2 & 3 Physics Goals

- Precise measurement of Higgs properties, in particular:
 - Higgs couplings (σ x BR) to gauge bosons at 2.5%, to fermions (b, τ) at 7% level. Needs also SM cross-sections theoretical improvements.
 - Sensitivity for CP-odd admixtures to scalar Higgs at **10-20%** level.
- Similar sensitivity of direct searches and indirectly from Higgs coupling measurements to:
 - extensions of the Higgs sector
 - dark matter couplings to Higgs

Event Yields Projections Run 2

$\mathcal{L}(\mathbf{fb}^{-1})$	All	Н→үү	$H \rightarrow ZZ \rightarrow 4l$	H→WW*→ <i>lvlv</i>
13.3	0.75M	600	20	400
150	8M	6800	225	4500
300	17M	13500	450	9000

• The peak instantaneous luminosity will be in the range:

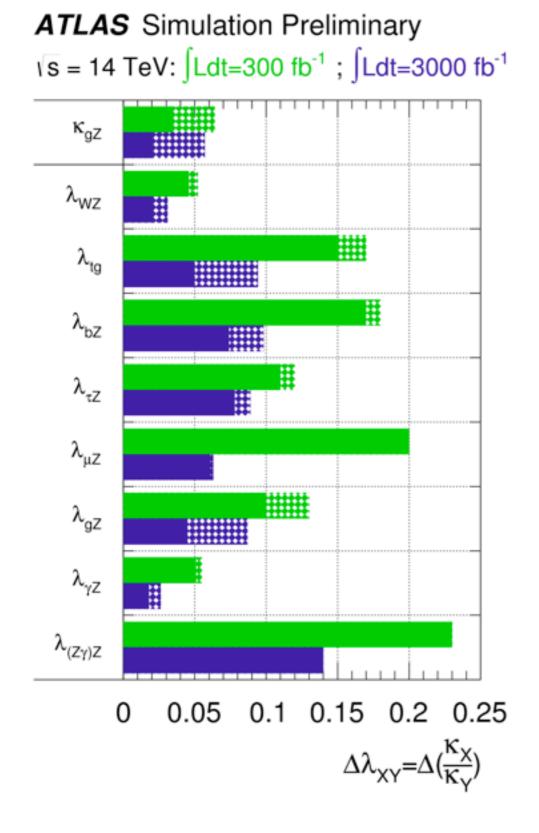

- $2-3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- expected pile-up ~60
- Projections for Run 3 (300 fb⁻¹) and HL-LHC (3000 fb⁻¹) are derived using MC hadron level samples with detector efficiency and resolution ("smearing") functions derived from full simulation of the expected upgraded detector and corresponding to the expected beam conditions.

ATL-PHYS-PUB-2013-014

Higgs Signal Strength

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

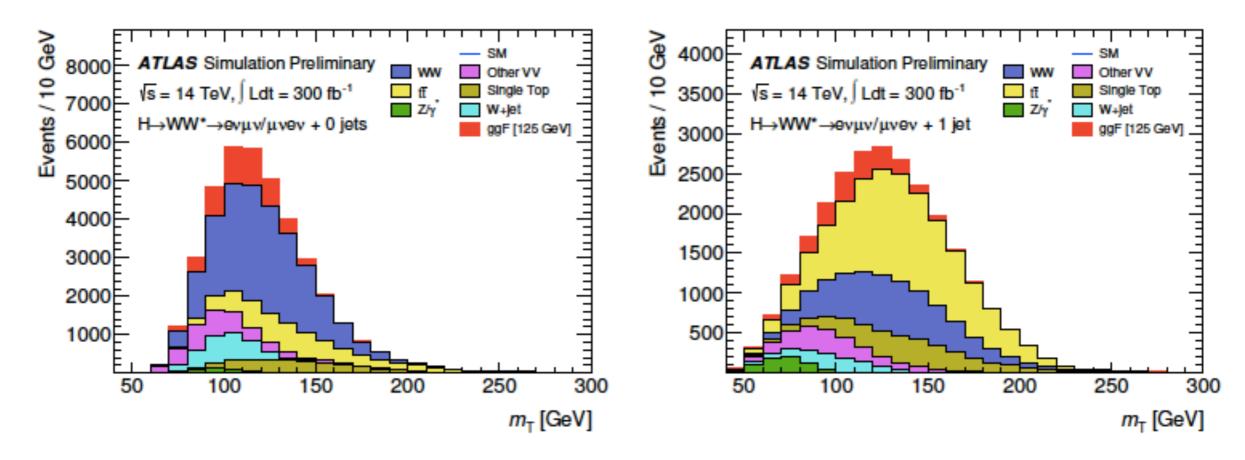


Thursday 29 September 16

- \bullet Relative uncertainty on the total signal strength μ for all Higgs final states
- The **hashed areas** show the **increase of the estimated error due to current theory systematic uncertainties**.
- Reducing the errors on the theory prediction is an important work ongoing in the theory community at present.

Expecting ~2.5% (7%) precision in Higgs couplings to vector bosons (fermions) reachable with Run 2&3.

Expected Higgs Couplings Results Run 2 & 3

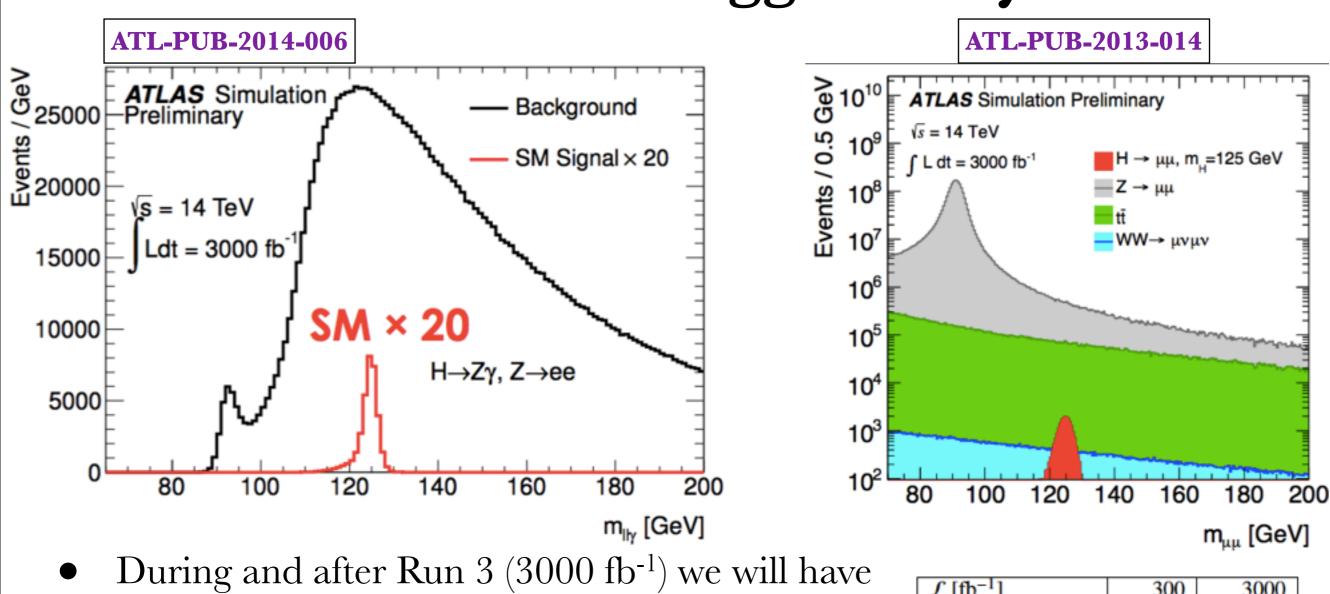

Relative uncertainty expected for the determination of coupling scale factor ratios λ_{ij}

$$\lambda_{ij} = \kappa_i / \kappa_j$$

- Higgs boson signal strength (stat+exp. unc. only):
- ICHEP 2016, 13.3 fb⁻¹, 18% (γγ+ZZ)
- Run 2, 150 fb⁻¹, ~7% ($\gamma\gamma$ +ZZ)
- Run 3, 300 fb⁻¹, ~2.5%

- At LHC we can measure λ 's in an almost model independent way
- in some cases some theory uncertainties cancel out: e.g. the ratio $\lambda_{\gamma Z}$ can be measured at ~2-3% (very important test of SM predictions)

$H \rightarrow WW \rightarrow l_{\nu}l_{\nu}$


* based on reconstructed events with 8 TeV extrapolated to the 14 TeV conditions by PDF reweighting and emulation of the difference in performance of the ATLAS detector in the high pile-up environment.

• ggF and VBF production modes studied, final states with $0,1, \ge 2$ jets, for pu=50

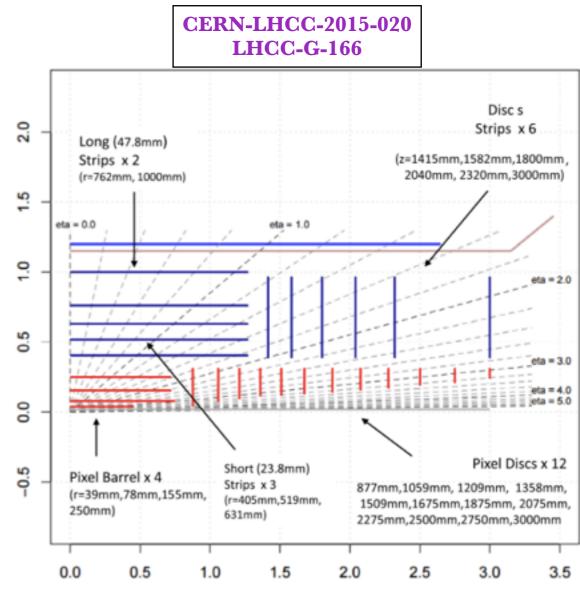
N _{jet}	N _{bkg}	Nsignal	NggF	N _{VBF}	N_{WW}	N_{VV}	$N_{t\bar{t}}$	N_t	$N_{\rm Z+jets}$	N_{W+jets}
										2860
= 1	21460	1970	1740	230	5760	1800	9360	2850	710	980
≥ 2	101	62	5	57	12	4	60	5	12	8

		$\mu_{ m ggF}$	$\mu_{\rm VBF}$	$\mu_{\rm ggF+VBF}$
The precision on the signal strength measurement	300 fb ⁻¹	$1^{+0.18}_{-0.15}$	$1^{+0.25}_{-0.22}$	$1^{+0.14}_{-0.13}$
20	3000 fb ⁻¹	$1^{+0.16}_{-0.14}$	$1^{+0.15}_{-0.15}$	$1^{+0.10}_{-0.09}$

Some Rare Higgs Decays

- the opportunity to observe rare Higgs decays:
- H→µµ right
 - SM sensitivity (1σ) expected with ~70 fb⁻¹ (2018)) & 7\sigma expected with 3000 fb⁻¹
- $H \rightarrow Z\gamma \rightarrow ee\gamma$ (left)

\mathcal{L} [fb ⁻¹]	300	3000
NggH	1510	15100
N _{VBF}	125	1250
N _{WH}	45	450
N _{ZH}	27	270
N _{ttH}	18	180
N _{Bkg}	564000	5640000
Δ_{Bkq}^{sys} (model)	68	110
Δ_{Bka}^{sys} (fit)	190	620
$\Delta^{\text{stat}}_{S+B}$	750	2380
Signal significance	2.3σ	7.0σ
$\Delta \mu / \mu$	46%	21%


Summary

- LHC is currently delivering data above expectations
 - We have recorded **27.5 fb⁻¹** (**92.3%** overall ATLAS **efficiency**) in 2016
- The Higgs boson was re-observed in the γγ+ZZ channels with ~10σ (8.6σ)
 observed (expected) significance (ICHEP) 2016
- Preliminary measurements of the Higgs boson cross-section and couplings have been examined in first Run 2 results and are found to be consistent with SM expectations
- An increase in data statistics would allow future sensitivity for results on Higgs self coupling and rare Higgs decays.
- Stay tuned for further 2016 results from Run 2 with ~40 fb⁻¹

BACKUP

Detector Upgrades

- New all-silicon tracker with significantly improved forward coverage:
 |η| <4 (now 2.5)
 - Improved granularity of forward calorimeter
 - Improved triggering capabilities
 - New high-granularity timing detector in the forward region
- Will improve capabilities to suppress pileup, in particular in the forward region
 → enhanced precision to study events with VBF topology

Production and decay strengths

• ATLAS uses parameters called production and decay strengths defined as the ratios between the actual production cross-sections/branching ratios and the SM predictions

Production (initial state)
$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}}$$
 and $\mu_f = \frac{BR_f}{(BR_f)_{SM}}$ Decay (final state)

• Maximum profile likelihoods used to determine these parameters from correlations between signal rates in various channels c:

$$n_{s}^{c} = \sum_{i} \sum_{f} \mu_{i}(\sigma_{i})_{\text{SM}} \times \mu_{f}(\text{BR}_{f})_{\text{SM}} \times A_{if}^{c} \times \varepsilon_{if}^{c} \times \mathcal{L}^{c}$$
Measured
Predicted
Estimated

H→µµ Uncertainties

	ggF signal	VBF signal
Experimental		
Luminosity	2.9%	,
Muon efficiency	1%	
Muon momentum resolution	<1%	1
Muon trigger	<1%	1
Muon isolation	2%	
Jet energy scale	-	5%
Theoretical		
Higgs branching ratio	1.23%	6
QCD scales	4%	0.8%
PDFs and α_s	1.9%	2.1%
ggF contribution to VBF	22% (VBF region only)	-
Multi-parton interactions	9%	4%
Higgs $p_{\rm T}$ distribution	22% for $p_{\rm T} < 10 {\rm ~GeV}$ 13% for $p_{\rm T} > 10 {\rm ~GeV}$	-

Table 2: Main sources of experimental and theoretical uncertainties on the signal yield, except for the error from mismodeling bias. "QCD scale" indicates the theoretical uncertainty on the Higgs boson production due to missing higher-order corrections estimated by varying the QCD renormalisation and factorisation scales, while "PDFs and α_s " indicates the uncertainty due to parton distribution functions, as described in Ref. [24]. Higgs p_T distribution uncertainties in the $p_T < 10$ GeV and $p_T > 10$ GeV regions are anti-correlated. The ranges for the uncertainties cover the variations among different categories and data-taking periods. The impact of the signal systematic uncertainties on the signal strength measurement is less than 0.5%.

The total systematic uncertainty (in %) for the background processes at 300 fb⁻¹ for H→WW

	$N_{\rm jet} = 0$			Λ	$N_{\rm jet} = 1$			$N_{\text{jet}} \ge 2$		
	14 TeV	ES	8 TeV	14 TeV	ES	8 TeV	14 TeV	ES	8 TeV	
WW	1.5	5	5	5	-	6.5	10	10	30	
VV	2	15	15	5	-	20	10	20	20	
tī	7	7	12	8	-	23	10	15	33	
tW/tb/tqb	7	7	12	8	-	23	10	15	33	
Z+jets	10	10	15	10	-	18	10	10	20	
W+jets	20	30	30	20	-	30	20	100	30	

Theoretical uncertainties at 8 TeV

	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\rm jet} \ge 2$
ggF QCD scale	17	37	43
ggF QCD acceptance	4	4	4
ggF PDF	8	8	8
ggF UE/PS	3	10	9
ggF total	19	39	44
VBF QCD scale	1	1	1
VBF QCD acceptance	4	4	4
VBF PDF	3	3	3
VBF UE/PS	3	10	3
VBF total	6	11	6

Coupling scale factors κ

The coupling scale factors κ_j are defined in such a way that the cross sections σ_j and the partial decay widths Γ_j associated with the SM particle *j* scale with κ_j^2 compared to the SM prediction [41]. With this notation, and with κ_H^2 being the scale factor for the total Higgs boson width Γ_H , the cross section for the $gg \rightarrow H \rightarrow \gamma\gamma$ process, for example, can be expressed as:

$$\frac{\sigma \cdot B \left(gg \to H \to \gamma \gamma \right)}{\sigma_{\rm SM}(gg \to H) \cdot B_{\rm SM}(H \to \gamma \gamma)} = \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2} \tag{2}$$

$$\kappa_g^2(\kappa_b,\kappa_t) = \frac{\kappa_t^2 \cdot \sigma_{ggH}^{tt} + \kappa_b^2 \cdot \sigma_{ggH}^{bb} + \kappa_t \kappa_b \cdot \sigma_{ggH}^{tb}}{\sigma_{ggH}^{tt} + \sigma_{ggH}^{bb} + \sigma_{ggH}^{tb}}$$

$$\kappa_{\gamma}^{2}(\kappa_{b},\kappa_{t},\kappa_{\tau},\kappa_{W}) = \frac{\sum_{i,j} \kappa_{i}\kappa_{j} \cdot \Gamma_{\gamma\gamma}^{ij}}{\sum_{i,j} \Gamma_{\gamma\gamma}^{ij}}$$

$$\kappa_{(Z\gamma)}^{2}(\kappa_{b},\kappa_{t},\kappa_{\tau},\kappa_{W}) = \frac{\sum_{i,j} \kappa_{i}\kappa_{j} \cdot \Gamma_{Z\gamma}^{ij}}{\sum_{i,j} \Gamma_{Z\gamma}^{ij}}$$

$$\kappa_{H}^{2} = \sum_{\substack{jj=WW, ZZ, b\bar{b}, \tau^{-}\tau^{+}, \\ \gamma\gamma, Z\gamma, gg, t\bar{t}, c\bar{c}, s\bar{s}, \mu^{-}\mu^{+}}} \frac{\kappa_{j}^{2}\Gamma_{jj}^{SM}}{\Gamma_{H}^{SM}}$$

Expected precision for Higgs couplings

Nr.	Coupling		300 fb ⁻¹	1	3	3000 fb ⁻	1
		Theory unc.:			Tł	neory un	c.:
		All	Half	None	All	Half	None
1	К	3.2%	2.7%	2.5%	2.5%	1.9%	1.6%
2	$\kappa_V = \kappa_Z = \kappa_W$	3.3%	2.8%	2.7%	2.6%	1.9%	1.7%
	$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$	8.6%	7.5%	7.1%	4.1%	3.5%	3.2%
	ĸz	8.4%	7.3%	6.8%	6.3%	5.0%	4.6%
	ĸw	8.0%	6.7%	6.2%	6.1%	4.8%	4.3%
3	ĸ	11%	9.0%	8.3%	7.0%	5.6%	5.1%
	$\kappa_{d3} = \kappa_{\tau} = \kappa_b$	18%	14%	13%	14%	11%	10%
	κ_{μ}	22%	20%	20%	10%	8.1%	7.5%
	κ _Z	8.0%	7.0%	6.6%	5.2%	4.3%	4.0%
	ĸw	7.7%	6.8%	6.5%	4.9%	4.2%	3.9%
	ĸ	19%	18%	18%	7.7%	6.7%	6.3%
4	$\kappa_d = \kappa_\tau = \kappa_\mu = \kappa_b$	16%	13%	12%	11%	8.2%	7.2%
	Kg	8.9%	7.9%	7.5%	4.3%	3.8%	3.6%
	κγ	13%	9.3%	7.8%	9.3%	5.9%	4.2%
	κ _{Zγ}	79%	78%	78%	30%	30%	29%
	КZ	8.1%	7.1%	6.7%	6.2%	4.9%	4.4%
	ĸw	7.9%	6.9%	6.5%	5.9%	4.8%	4.4%
	Kt	22%	20%	20%	10%	8.4%	7.8%
5	$\kappa_{d3} = \kappa_{\tau} = \kappa_b$	18%	15%	13%	15%	11%	9.7%
	κ_{μ}	23%	21%	21%	11%	8.5%	7.6%
	κ _g	11%	9.1%	8.5%	6.9%	5.5%	4.9%
	κγ	13%	9.3%	7.8%	9.4%	6.1%	4.6%
	KZγ	79%	78%	78%	30%	30%	29%

Table 18: Expected precision on Higgs coupling scale factors with 300 and 3000 fb⁻¹ at $\sqrt{s} = 14$ TeV for selected parametrizations, assuming no new contributions to the Higgs total width beyond those in the Standard Model. The Higgs total width can still differ from its expected value in the Standard Model in the absence of any new decay modes if any of its couplings to SM particles differ from their expected values. Additional parametrizations explicitly including the *b*-quark coupling scale factor κ_b are possible in principle, but are not studied at the moment in the absence of $H \rightarrow b\bar{b}$ projections at high luminosity. The coupling scale factor κ_V represents the gauge bosons *W* and *Z*, κ_F all fermions, and κ_d and κ_{d3} all, respectively third generation, down-type fermions.