
Requirements, improvements, challenges in Higgs physics at HL-LHC

Precision theory

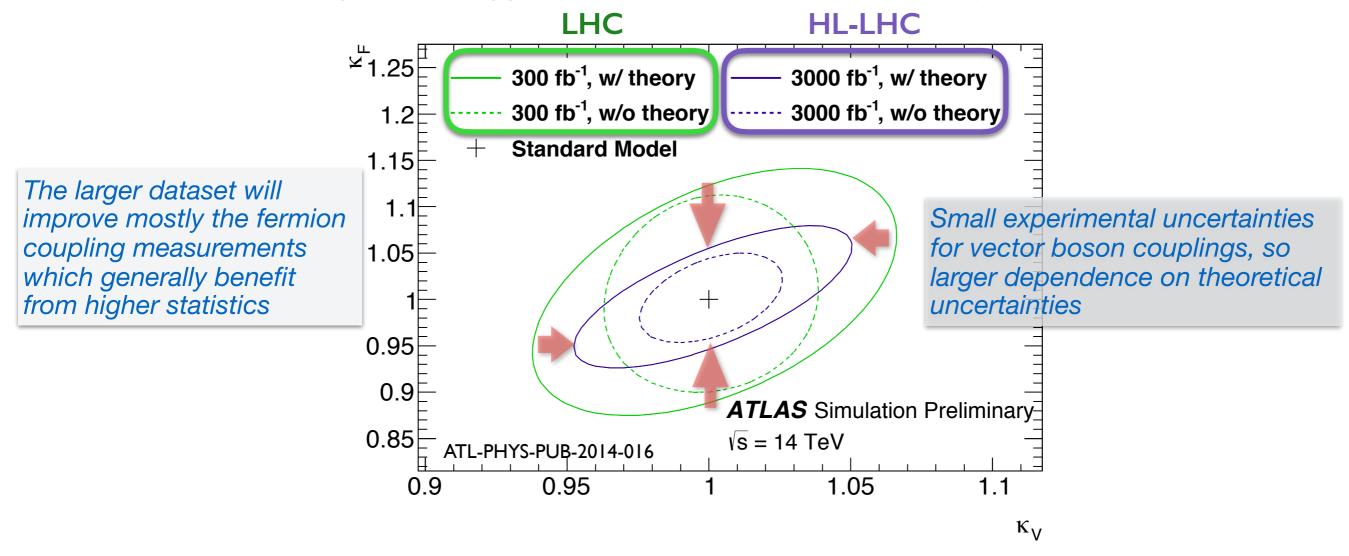
for precise measurements
at the LHC and future colliders
25/9 - 1/10 2016
Quy Nhon, Vietnam

Ioannis Nomidis

on behalf of ATLAS+CMS collaborations

Requirements, improvements, challenges in Higgs physics at HL-LHC

- We are required to improve, and that poses a challenge...
 - on the detectors
 - on the analyses
 - on the theory

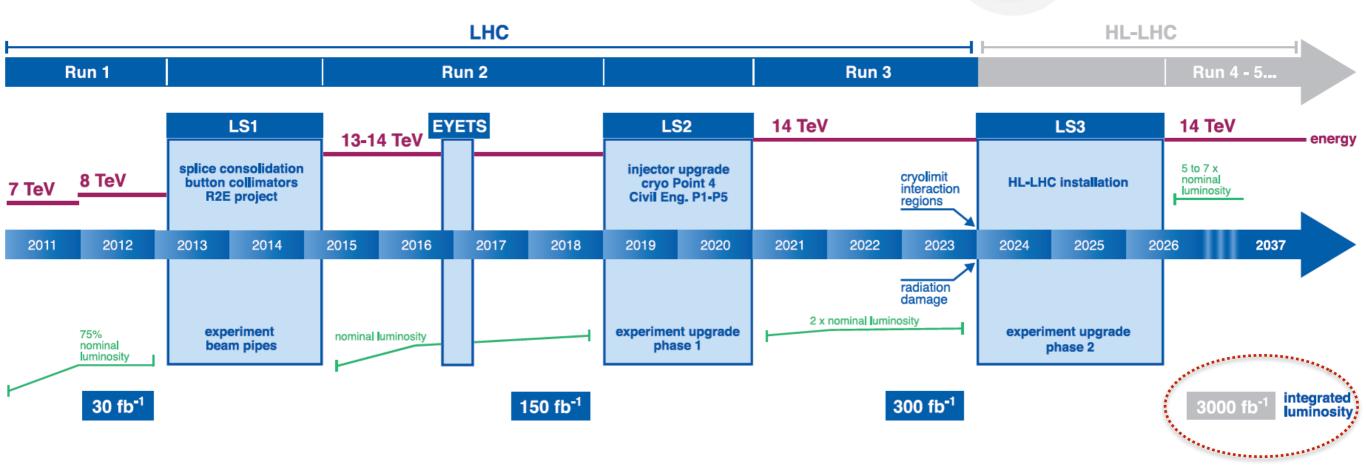

In this presentation:

- Plans for detector upgrade
- Projected performance of object reconstruction
- Projected analysis results for interesting channels
- Theory dependence of measurements

For expected results with <3000 fb⁻¹, see talks (29/9) by A. Perieanu (CMS) and O. Boeriu (ATLAS)

Goal for Higgs physics at the HL-LHC

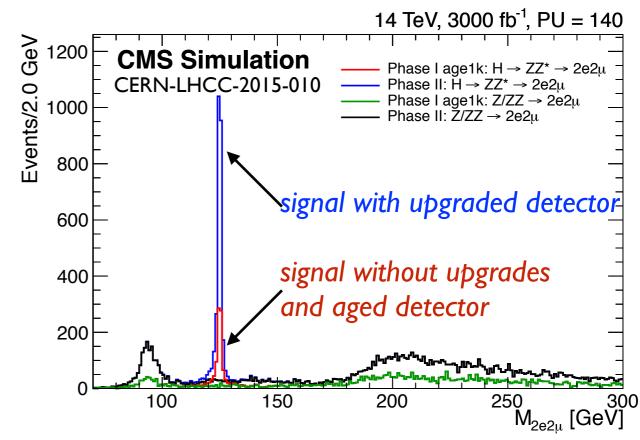
Measure the couplings of the Higgs boson with few per-cent accuracy


Access to rare decays and Higgs-pair production

Measurements are extremely important to BSM phenomenology

Also: direct searches for heavy Higgs partners

LHC / HL-LHC Plan

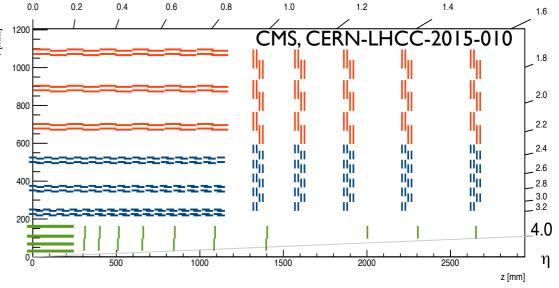

- Aiming to increase the dataset from 300 fb⁻¹ to 3000 fb⁻¹ after 10 years of operation (2026-2037)
- Instantaneous luminosity must go up to 5-7.5 \times 10³⁴ cm⁻²s⁻¹, **extreme pile-up conditions** with up to 140-200 interactions per bunch crossing on average ($\langle \mu \rangle$) and **high radiation levels**
- Detector and trigger improvements are mandatory in order to keep the same level of performance and precision physics capability

ATLAS and CMS detector upgrade is imperative...

- → Due to aging that would degrade the performance dramatically
- ightharpoonup Current detectors simply cannot handle $\langle \mu \rangle$ of 140 or above

Life in 2030 with $\langle \mu \rangle \sim 140$ without upgrades

- Trigger: p_T thresholds will rise, will be losing interesting events
- Inner tracker: performance will drop dramatically for efficiency; much higher fake rates
 - Degradation of primary vertex reconstruction and identification will have strong impact on b-tagging performance and pile-up jet suppression
- Calorimeters: swamped with noise
 - Challenge on jet energy resolution and missing E_T
- Physics example: highly reduced yields for one of the 'golden' channels, H→ZZ→4ℓ

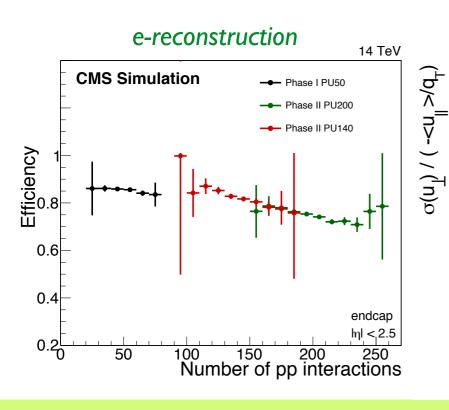


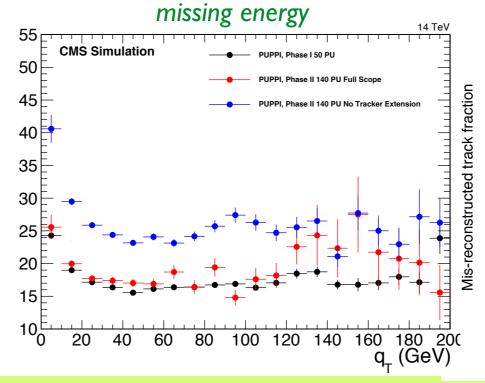
The upgraded detectors should help to maintain similar levels of performance as today.

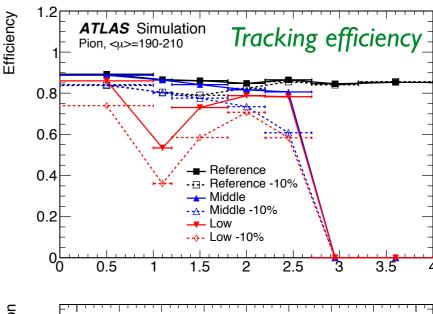
ATLAS and CMS detector upgrade

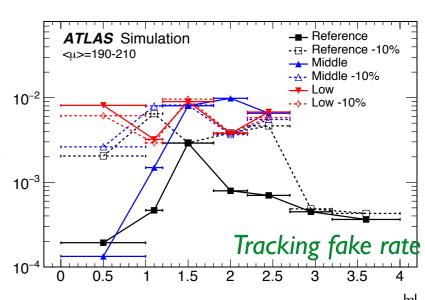
Very similar planning between the two experiments for the Phase-II upgrade; different scenarios studied but decision not taken yet

- Replacement of inner detectors with all-Si trackers
 - Better radiation tolerance, high granularity;
 maintain efficiency and acceptable fake rate

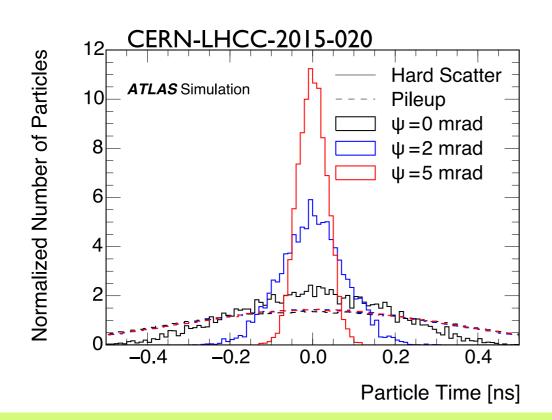

- Considering extending coverage of tracking detectors up to as far as $|\eta|=4$
 - Tracker extension extremely useful for pile-up mitigation in the forward region
- Smarter and faster electronics for trigger at level-1 to keep the p_T thresholds low
 - Increased latency (10-30 μsec) and output rate (400-1000 kHz) for L1 trigger
- Upgrades to muon systems
 - For better performance and triggering at large |η|, already in Phase-I upgrade for ATLAS, later for CMS
- Forward calorimetry
 - CMS to replace endcap calorimeter with "HGCAL" (with good timing)
 - ATLAS considering new high-granularity calorimeter and dedicated timing detector

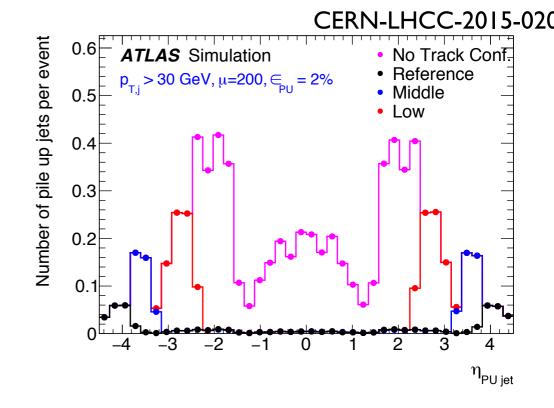

Scoping documents:

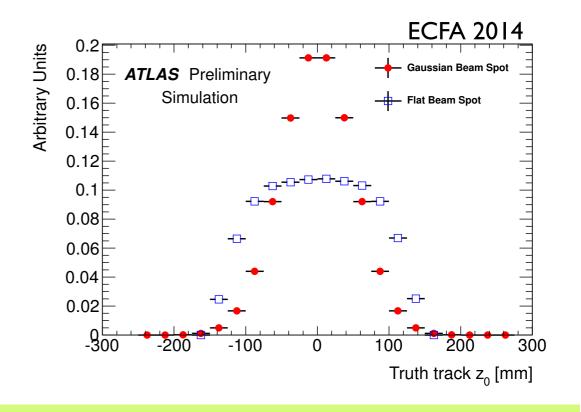

CMS: CERN-LHCC-2015-019 ATLAS: CERN-LHCC-2015-020


Performance at high pile-up

- Detector response modelled with full Geant4 simulation of benchmark processes (e.g. ttbar, Z→ℓℓ)
- Scoping documents:
 CMS: CERN-LHCC-2015-019
 ATLAS: CERN-LHCC-2015-020
- Pile-up assumed to be $\langle \mu \rangle = 140/200$ and is added by overlaying minimum-bias events in generated processes
- Note-I: reconstruction + identification not fully optimized for extreme pile-up conditions
- Note-II: simple pile-up mitigation techniques are utilized







- Critical aspect for almost all analyses
- Basic approach: associate tracks of jet with the primary vertex
 - Tracker extended in |η| helps
- Other ideas to mitigate pile-up:
 - With timing information from the calorimeters
 - With longer beam spot

Projection methodology

ATLAS:

- Resolution and efficiency are extracted from fully-simulated benchmark processes
- Corrections functions are applied on generator-level objects to emulate detector response
- Performance of upgraded detector most times is similar as today, so keeping systematics at the same level
- Quoting results with full theoretical uncertainties (as in Run-I or with best available), also reduced to 50% and 0%

CMS:

- For combination results: projecting current analyses to 3 ab⁻¹, assuming same performance as today
- Quoting results with total systematics as in Run-I ('scenario 1') or with theoretical uncertainties reduced by 50% and systematics scaled by 1/√L_{int} ('scenario 2')
- For dedicated analyses (HH): detector response extracted from fully-simulated benchmark processes, using smearing functions on generator-level objects or Delphes fast simulation
- Full simulation for H→ZZ*→4ℓ

Coupling precisions

ATLAS Simulation Preliminary

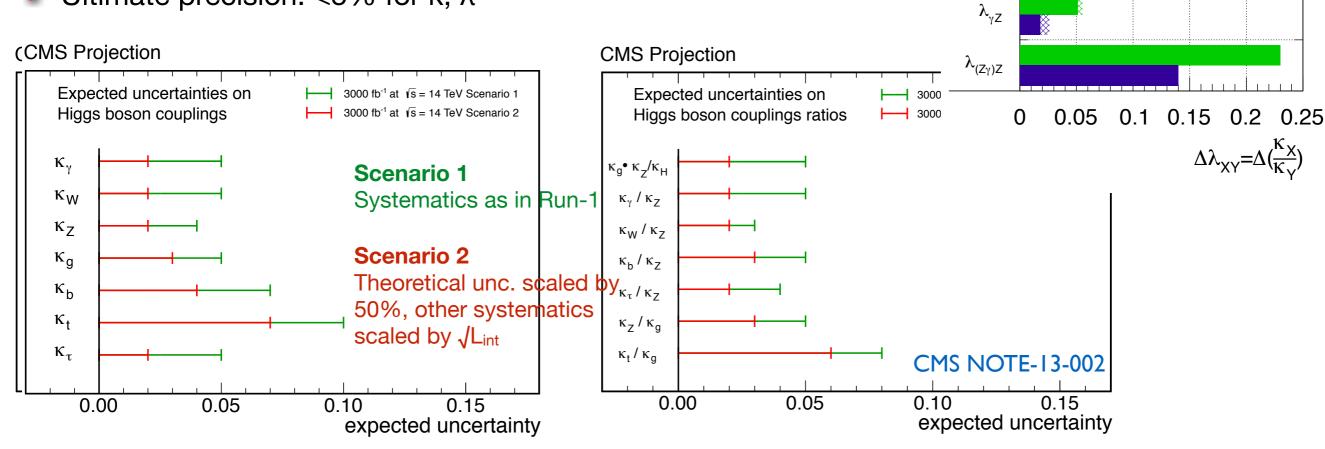
 $\boldsymbol{\lambda}_{WZ}$

 $\boldsymbol{\lambda}_{bZ}$

 $\boldsymbol{\lambda}_{\tau Z}$

 $\lambda_{\mu Z}$

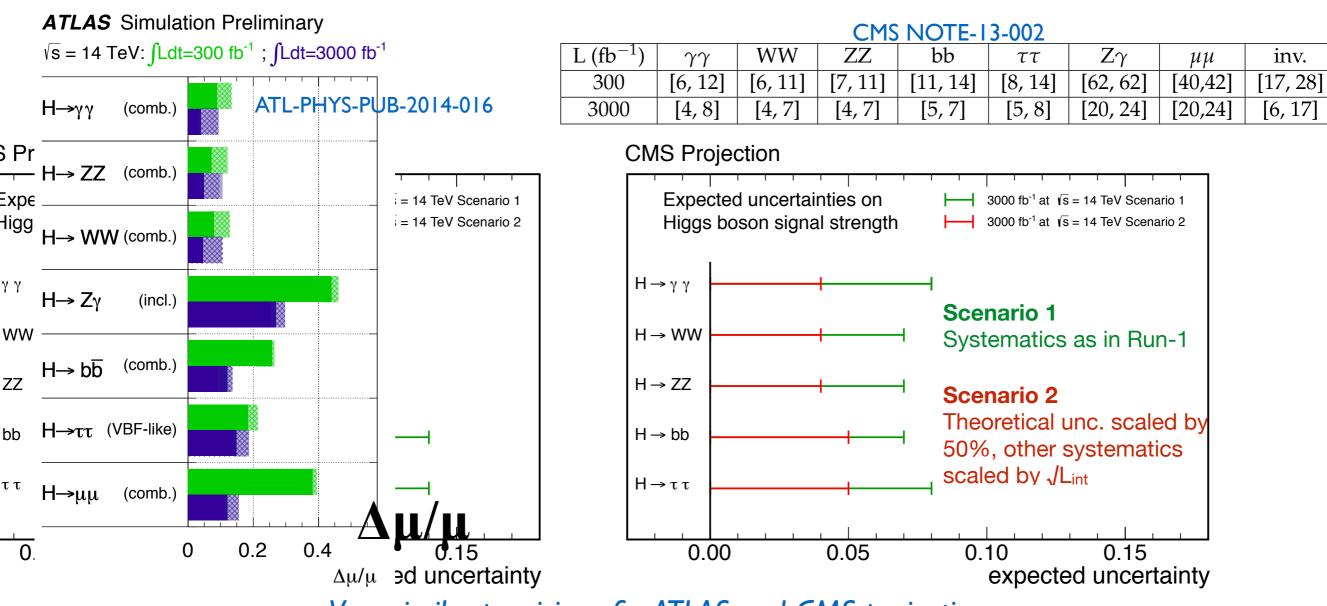
 λ_{gZ}


 \sqrt{s} = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

ATL-PHY\$-PUB-2014-016

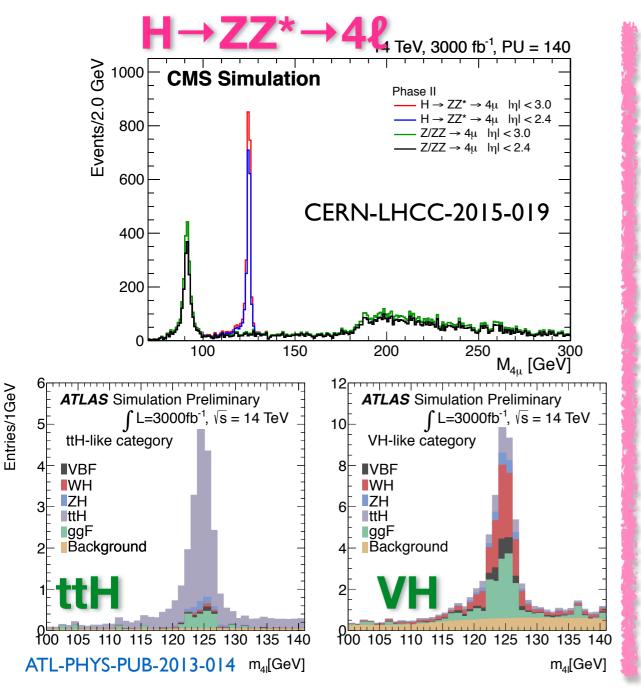
 Using narrow-width approximation for Higgs, can relate observed yields to production cross-section (σ_i) and partial +total decay widths (Γ_i, Γ_{tot}):

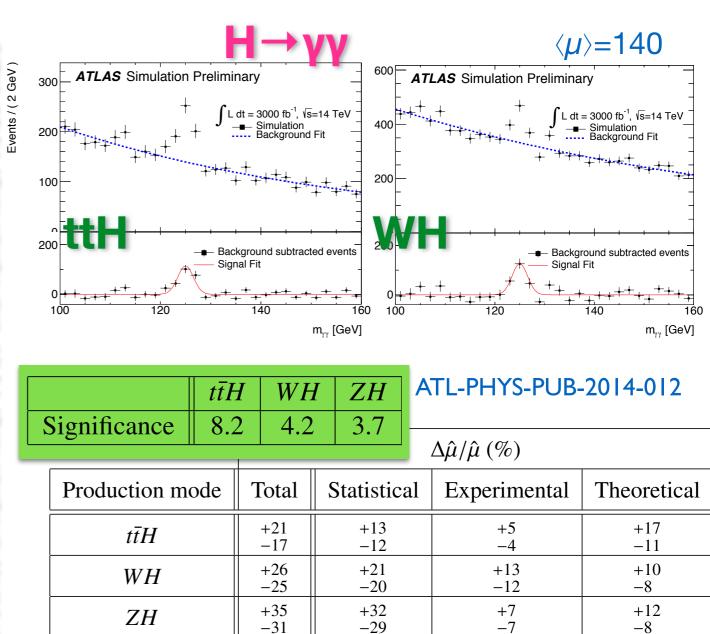
$$(\sigma \cdot BR)(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_{\text{tot}}}$$


- Expressing compatibility of measurements with respect to SM expectation with the coupling modifiers (κ_x) and their ratios ($\lambda_{xy} = \kappa_x/\kappa_y$)
- Ultimate precision: <5% for κ, λ</p>

Signal strength precisions

- Signal strength (μ) used to express compatibility of $\sigma \times BR$ measurements with theory
- Goal is to minimize the uncertainty of the measurements $(\Delta \mu/\mu)$ QCD+PDF uncertainties become significant


inv.



Very similar precisions for ATLAS and CMS projections. Some large differences ($H \rightarrow \tau \tau$, $H \rightarrow bb$) due to more channels used in the combination for CMS

'Golden' channels: $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell = e, \mu$) and $H \rightarrow \gamma\gamma$

- Clean signal peaks on top of smooth background continuum; good performance even in these extreme conditions
- Can provide clean observation of all production modes

+3

-3

+1

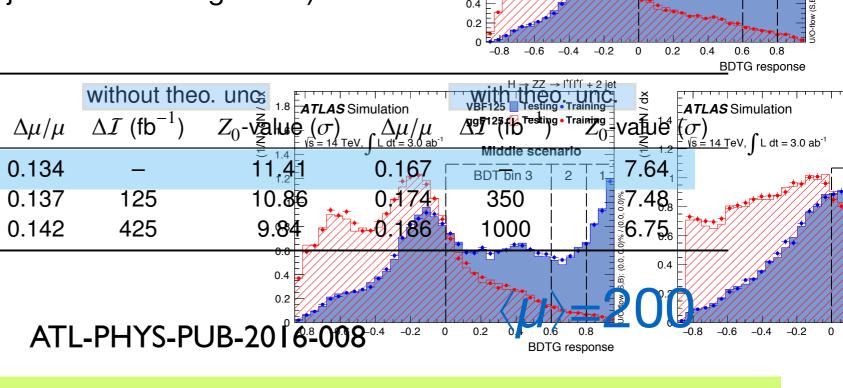
-31

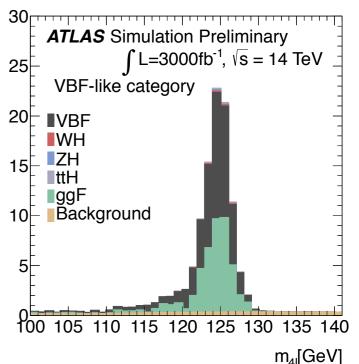
+19

-14

ggF

-8

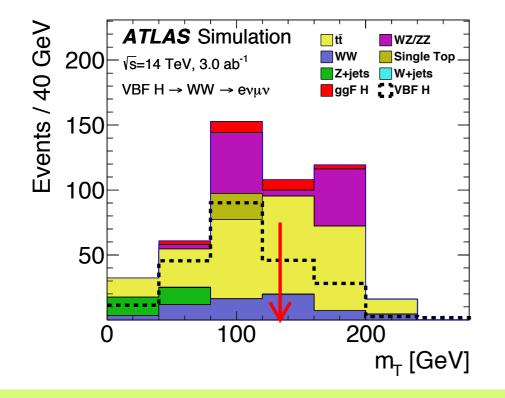

+19

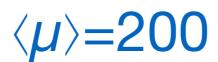

-14

VBF $H \rightarrow ZZ^* \rightarrow 4\ell$

- Must disentangle ggF/VBF production modes
- Must control the background from pile-up jets in the forward region
- Analysis approach: using BDT method for optimal signal/ background separation
- Nice case study to quantify benefit from upgraded detector: extended tracking scenarios ('reference', 'middle') greatly help in reducing pile-up background, pile-up background doubles in the modest scenario ('low')
- Notice vulnerability of measurements to large theoretical uncertainties (QCD scale for ggF+jets with VBF signature)

	Pile-up impurity (%)					
Scoping scenario	Bin 1	Bin 2	Bin 3			
VE	F Sample					
Reference	2.0	4.6	13.1			
Middle	3.0	6.4	23.6			
Low	5.2	12.0	38.7			
99	F Sample					
Reference	23.2	37.9	52.1			
Middle	24.0	43.4	65.0			
Low	41.2	59.4	76.2			

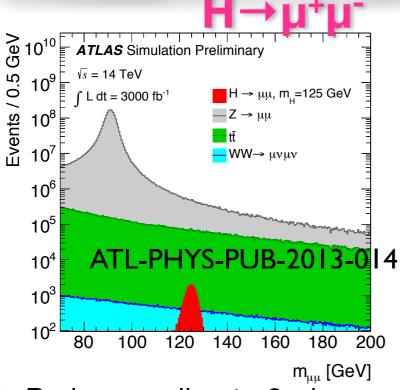


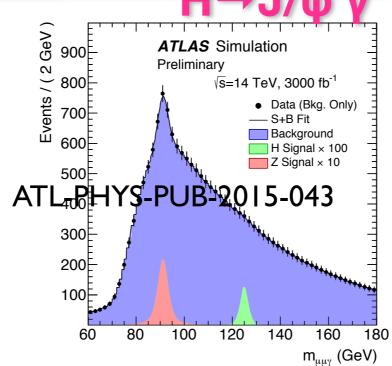


VBF $H \rightarrow WW \rightarrow \ell \nu \ell \nu \ (\ell = e, \mu)$

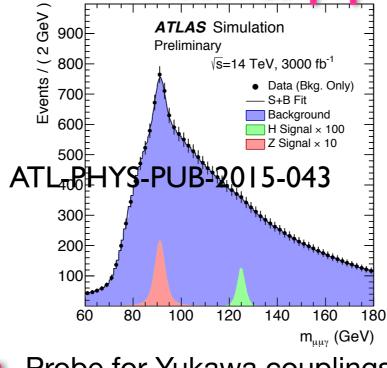
- Particularly challenging due to large backgrounds (dominant systematic uncertainty)
- Good benchmark for performance at HL-LHC conditions: depends on performance of E_T^{miss}, central-jet veto, b-tagging for forward jets (ttbar veto)
- Deficiencies of more modest upgrade scenarios result in larger background contributions that cannot be recovered with larger integrated luminosity
- Careful analysis optimization carried out assuming the predicted performance shows that we can achieve 2.7-7σ significance depending on the upgrade scenario and size of theoretical uncertainties, reaching a precision of 39-16%, respectively

ATL-PHYS-PUB-2016-018




Syst. unc.	ggF (%)	VBF (%)
QCD N _{jet} cross-section	43	1
QCD acceptance	4	4
PDF	8	3
UE/PS	9	3
Total	44	6

Scoping scenario	Δ_{μ}			Sign	ifican	$ce(\sigma)$
Signal unc.	Full	1/2	None	Full	1/2	None
Reference	0.20	0.16	0.14	5.7	7.1	8.0
Middle	0.25	0.21	0.20	4.4	5.2	5.4
Low	0.39	0.32	0.30	2.7	3.3	3.5


Rare decays

- Probe coupling to 2nd generation fermions
- ATLAS: **7** σ observation for $\langle \mu \rangle$: ~140, measurement of 25% (stat.) ⊕ 17% (syst.) precision
- CMS expects 14/20% uncertainty with scenario 2/1 [*] :

- Probe for Yukawa couplings
- ATLAS anticipates to set the limit of the BR($H \rightarrow J/\psi \gamma$) at 15×SM expectation
- First limit set from ATLAS at 600×SM (PRL 114 (2015) 121801)

- Probe for new physics in the loop; important for coupling measurement ATLAS: 3.9σ observation for $\langle \mu \rangle \sim 140$, measurement of 25% (stat.) ⊕ 17% (syst.) precision
 - CMS expects 20/24% uncertainty with scenario 2/1 [*]
 - [*] CMS NOTE-13-002

8000

Fit) / GeV

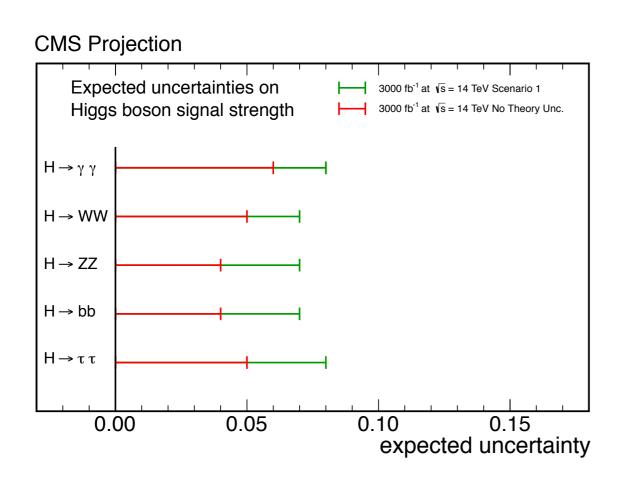
√s = 14 TeV

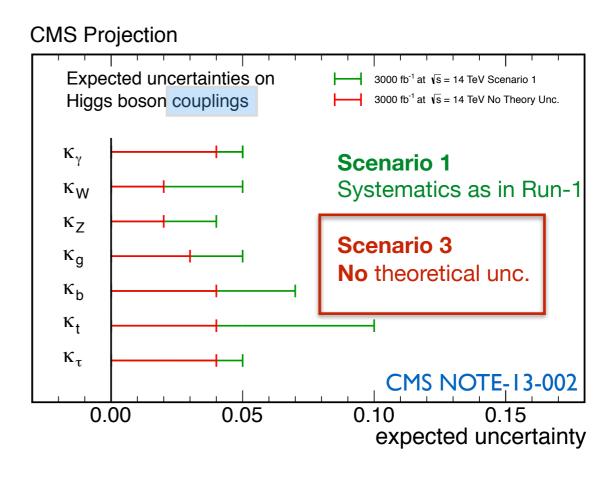
 $Ldt = 3000 \text{ fb}^{-1}$

ATLAS Simulation Preliminary

ATL PHYS-PUB-2014-006

····· B-only fit


 $H\rightarrow Z\gamma$, $Z\rightarrow \mu\mu/ee$


High p_→ category

- Rare Higgs decays are sensitive probes for new physics
- Observation at the SM rate for $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$ will only be possible with the HL-LHC dataset

Dependence of measurements on theory input

Significant contribution from theoretical uncertainties to the total uncertainty, can be up to 50%

- To reach the ultimate precision on Higgs measurements, improvements are required also on the theoretical calculations for the signal processes
- Uncertainties for background processes also relevant for specific channels: e.g. electroweak unc. for high mass ZZ (H→4ℓ), V/tt+heavy flavour production for VH/ttH (H→bb)

Theory uncertainties for Higgs signal

What must be achieved for theory calculations in order to have a smaller than 10% contribution to the total uncertainty

Scenario	Status	Deduced size of uncertainty to increase total uncertainty							
	2014	by ≤	10% for	300 fb^{-1}	by $\leq 10\%$ for 3000 fb ⁻¹				
Theory uncertainty (%)	[10–12]	κ_{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ_{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{ au Z}$	λ_{tg}
$gg \rightarrow H$									
PDF	8	2	_	-	1.3	_	_	_	-
incl. QCD scale (MHOU)	7	2	_	-	1.1	_	_	_	_
p_T shape and $0j \rightarrow 1j$ mig.	10–20	_	3.5–7	-	-	1.5–3	_	_	_
$1j \rightarrow 2j \text{ mig.}$	13–28	_	_	6.5–14	-	3.3–7	_	_	_
$1j \rightarrow VBF 2j mig.$	18–58	_	_	-	-	_	6–19	_	-
VBF $2j \rightarrow VBF 3j mig$.	12–38	_	_	-	-	_	_	6–19	_
VBF									
PDF	3.3	_	_	-	-	_	2.8	_	-
t t H									
PDF	9	_	_	-	_	_	_	_	3
incl. QCD scale (MHOU)	8	_	_	-	_	_	_	_	2

ATL-PHYS-PUB-2014-016

- Need for improved PDFs and QCD calculations
 - ggH: clearly needing higher order calculations for multi-jet final states

The ultimate goal for HL-LHC: HH

Access to λ_{HHH} is a unique way to fully establish the Higgs field potential, particularly interesting for BSM...

Decay Channel	Branching Ratio	Total Yield (3000 fb ⁻¹)
$b\overline{b} + b\overline{b}$	33%	4.1×10^4
$b\overline{b} + W^+W^-$	25%	3.1×10^4
$b\overline{b} + \tau^+\tau^-$	7.4%	9.0×10^{3}
$W^+W^- + au^+ au^-$	5.4%	6.6×10^3
$ZZ + b\overline{b}$	3.1%	3.8×10^3
$ZZ + W^+W^-$	1.2%	1.4×10^3
$\gamma\gamma + b\overline{b}$	0.3%	3.3×10^2
$\gamma\gamma + \gamma\gamma$	0.0010%	1

Considering decays with high BR: bb+ττ and bb+γγ
channels are our best chances to observe a signal

Must have excellent performance in b-tagging, γ resolution,
 τ-efficiency and fake rate

120 p_{_}

CERN-LHCC-2015-010

CMS Simulation

O.06

O.05

O.04

O.04

O.03

O.02

O.01

CERN-LHCC-2015-010

O.05

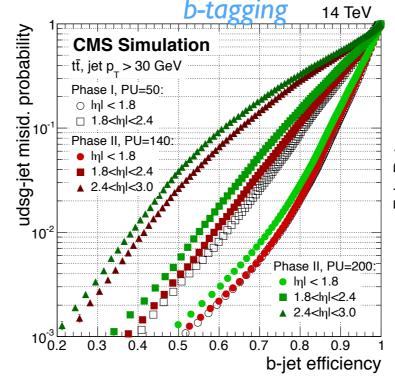
O.06

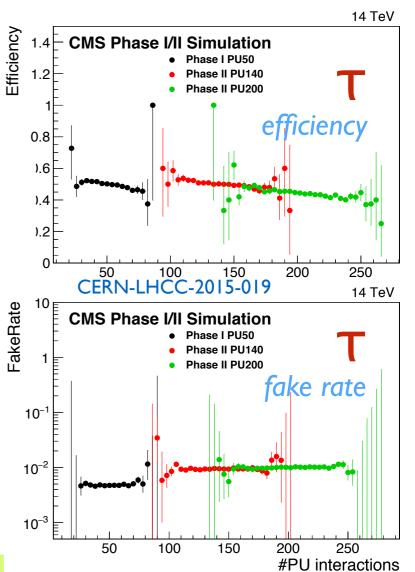
O.07

O.08

O.09

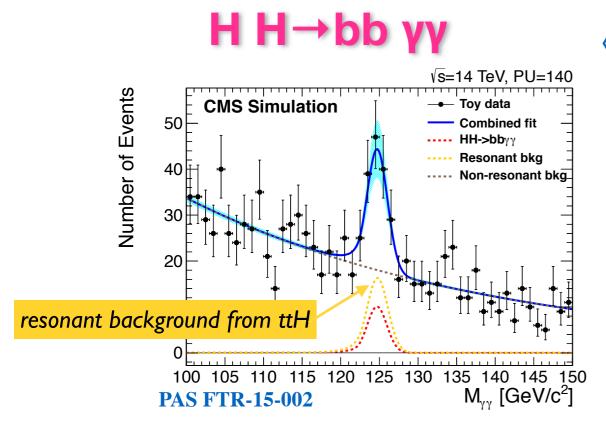
O.09

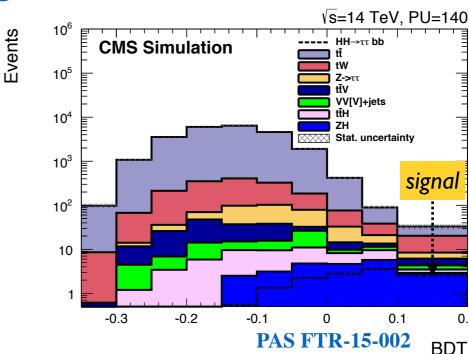

O.001


O

60

80


100


20

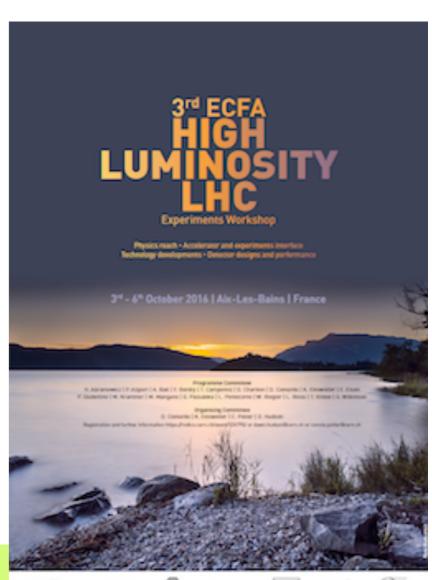
The ultimate goal for HL-LHC: HH

- Observation at the SM rate possible for ATLAS and CMS with the HL-LHC dataset
 - Expectations: CMS 1.6σ, ATLAS 1.3σ
 [CMS-PAS-FTR-15-002], [ATL-PHYS-PUB-2014-019]

- Dominated by large backgrounds but important for combination
 - Expectations: CMS 0.9σ, ATLAS 0.6σ [CMS-PAS-FTR-15-002], [ATL-PHYS-PUB-2015-046]
- Combination of both channels provides and expected significance of 1.9σ for CMS
- With better performance than the conservative estimates used in the projections and with more channels in the combination (bb+WW, bb+bb), there is good chance to observe first hints for HH production at the HL-LHC

Summary

Look to the future of Higgs physics with measurements at the HL-LHC


What we aim to achieve:

- Access almost all decays of the Higgs boson and measure couplings with <5% precision</p>
- First measurements of Higgs-pair production for a more complete understanding of the electroweak symmetry breaking mechanism

What we need:

- Detector upgrades and more advanced and pile-up robust algorithms
- Smarter analysis techniques to cope with the extreme background conditions
- Reduced theoretical uncertainties

Disclaimer: New results and updated upgrade plans to be presented at ECFA next week

Additional material

H→bb

- Largest BR but studies limited to VH and ttH production mode due to large backgrounds
- Important to probe coupling to fermions and constrain BR for BSM
- Not observed yet... Possible at the LHC but multiple analyses must be combined to exceed 5σ

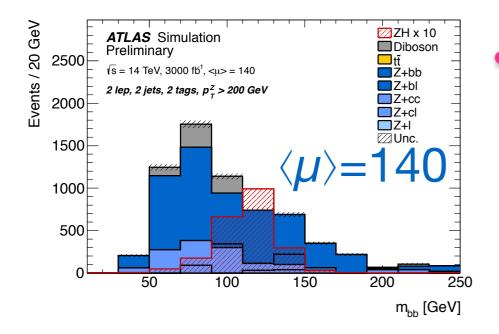
ATLAS expects >9σ just in VH, V leptonic modes

ATL-PHYS-PUB-2014-011

1) Conservative scenario:

Run-I-like analysis projected at much higher pile-up

2) Realistic / optimistic scenario:


MVA techniques, improved b-tagging and jet calibration

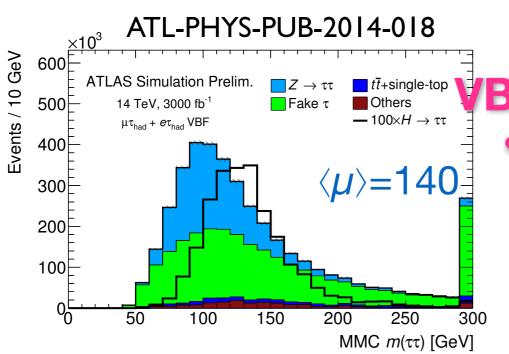
		one repress	I Wo Tepron	one i ave repress
Stat-only	Significance	15.4	11.3	19.1
	$\hat{\mu}_{\mathrm{Stats}}$ error	+0.07 - 0.06	+0.09 - 0.09	+0.05 - 0.05
Theory-only	$\hat{\mu}_{ ext{Theory}}$ error	+0.09 - 0.07	+0.07 - 0.08	+0.07 - 007
	Significance	2.7	8.4	8.8
Scenario I	$\hat{\mu}_{ ext{w/Theory}}$ error	+0.37 - 0.36	+0.15 - 0.15	+0.14 - 0.14
	$\hat{\mu}_{ ext{wo/Theory}}$ error	+0.36 - 0.36	+0.14 - 0.12	+0.12 - 0.12
	Significance	4.7	-	9.6
n Scenario II	$\hat{\mu}_{ ext{w/Theory}}$ error	+0.23 - 0.22	-	+0.13 - 0.13
	$\hat{\mu}_{ ext{wo/Theory}}$ error	+0.21 - 0.21	_	+0.11 - 0.11

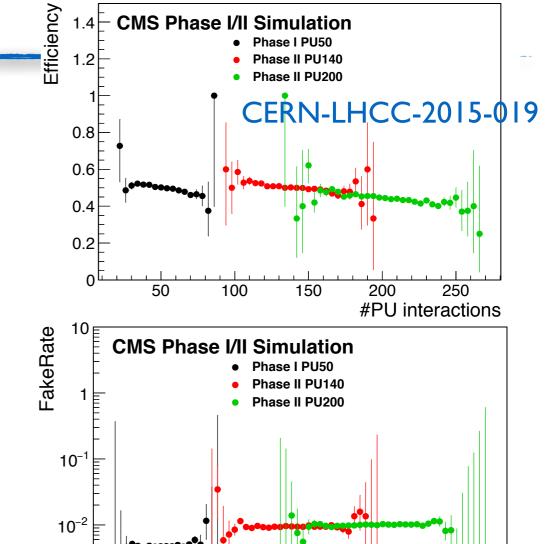
One-lepton

Two-lepton

One+Two-lepton

CMS demonstrates an ultimate precision of Δμ/μ ~ 5-7% to be achieved with the combination of VH with ttH using multiple decay channels


channels combined for $H \rightarrow bb$ measurements


CMS NOTE-13-002

VH-tag	$(\nu\nu, \text{ ee}, \mu\mu, \text{ ev}, \mu\nu \text{ with 2 b-jets}) \times x$
ttH-tag	$(\ell \text{ with } 4, 5 \text{ or } \geq 6 \text{ jets}) \times (3 \text{ or } \geq 4 \text{ b-tags});$ $(\ell \text{ with } 6 \text{ jets with } 2 \text{ b-tags}); (\ell \ell \text{ with } 2 \text{ or } \geq 3 \text{ b-jets})$

$H \rightarrow T^+T^-$

- Important to probe coupling to fermions
- Expecting impact on E_T^{miss} and τ -lepton performance
- CMS detailed performance studies with Z→T+T-
 - Upgrades will allow to maintain efficiency at same levels
 - Fake rate will double in the high pile-up conditions, but can keep it relatively stable with increasing \(\psi\)

→ Tlep Thad

ATLAS projections with same MVA approach as in Run-1:

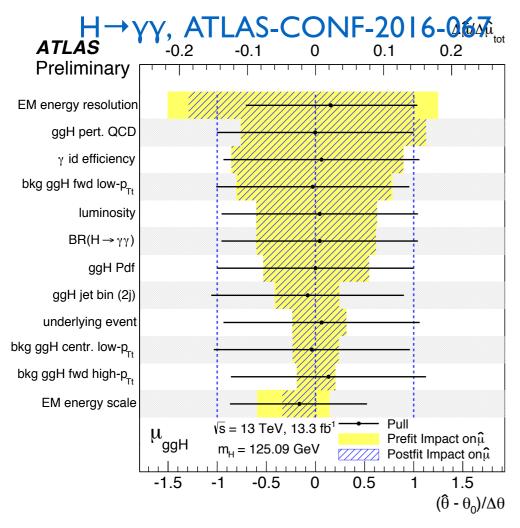
50

100

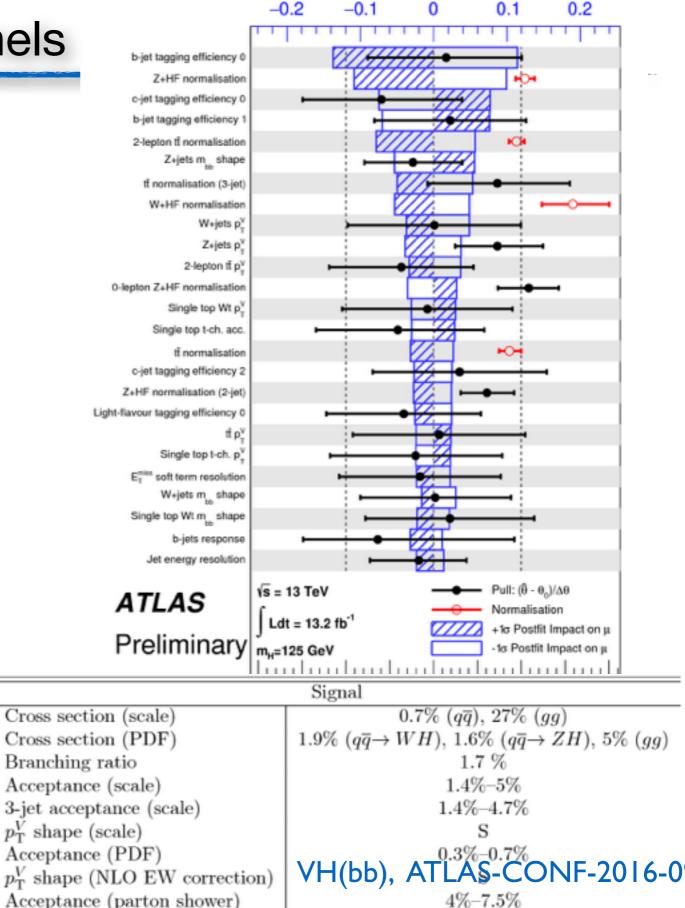
150

200

 10^{-3}


W/o theory uncertainties: $\Delta\mu/\mu \sim 24\%$ in the extreme background scenarios... could be reduced to 8%-18%, depending on the forward tracker coverage scenario / pile-up jet rejection

250


#PU interactions

14 TeV

Uncertainties in various channels

Source	Uncertainty on fiducial cross section (%)					
	Baseline VBF-enhanced single-leptor					
Fit (stat.)	34.5	35.0	52.9			
Fit (syst.)	9.0	11.1	9.3			
Photon efficiency	4.4	4.4	4.4			
Jet energy scale/resolution	-	9.4	-			
Lepton selection	-	-	0.8			
Pileup	1.1	2.0	1.4			
Theoretical modelling	4.3	9.4	8.4			
Luminosity	2.9	2.9	2.9			

Uncertainties in various channels

H→WW, Phys. Rev. D 92, 012006 (2015)

TABLE X. Signal-yield uncertainties (in %) due to the modeling of the gluon-fusion and vector-boson-fusion processes. For the $n_j = 0$ and $n_j = 1$ categories the uncertainties are shown for events with same-flavor leptons; for events with different-flavor leptons the uncertainties are evaluated in bins of $m_{\ell\ell}$ and $p_{\rm T}^{\ell 2}$. For the $n_j \geq 2$ VBF category the uncertainties are shown for the most sensitive bin of BDT output (bin 3).

Uncertainty source	$n_j = 0$	$n_j = 1$	$n_j \ge 2$ ggF	$n_j \ge 2$ VBF
Gluon fusion				
Total cross section	10	10	10	7.2
Jet binning or veto	11	25	33	29
Acceptance				
Scale	1.4	1.9	3.6	48
PDF	3.2	2.8	2.2	-
Generator	2.5	1.4	4.5	-
UE/PS	6.4	2.1	1.7	15
Vector-boson fusion				
Total cross section	2.7	2.7	2.7	2.7
Acceptance				
Scale	-	-	-	3.0
PDF	-	-	-	3.0
Generator	-	-	-	4.2
UE/PS	_	-	_	14

	Impact on $\hat{\mu}$			Imp	eact on $\hat{\theta}$
Systematic source	Post	fit Λ:	Plot of postfit $\pm \Delta$	Pull,	Constr.,
2, 200222020	+	—μ —		$\hat{\theta} (\sigma)$	$\Delta_{ heta}$
ggF H, PDF variations on cross section	1 - 0.06	+0.06	-	-0.06	±1
ggFH, QCD scale on total cross sectio				-0.05	± 1
WW, generator modeling	-0.05			0	± 0.7
Top quarks, generator modeling on α_{top}	÷0.03	-0.03	-	-0.40	± 0.9
Misid. of μ , OC uncorrelated corr. factor				0.48	± 0.8
Integrated luminosity, 2012	-0.03			0.08	± 1
Misid. of e , OC uncorrelated corr. factor				-0.06	± 0.9
ggFH, PDF variations on acceptance				-0.03	± 1
Jet energy scale, η intercalibration	-0.02			0.45	± 0.95
VBFH, UE/PS	-0.02	+0.02	-	0.26	± 1
ggF H , QCD scale on ϵ_1	-0.01	+0.03	-	-0.10	± 0.95
Muon isolation efficiency	-0.02	+0.02		0.13	± 1
VV, QCD scale on acceptance	-0.02	+0.02		0.09	± 1
ggFH, UE/PS	-	-0.02	+ + +	0	± 0.9
ggF H, QCD scale on acceptance	-0.02	+0.02	-	0	± 1
Light jets, tagging efficiency	+0.02	-0.02	+	0.21	± 1
ggFH, generator modeling on acceptan	n c -0.01	-0.02	+	0.10	± 1
ggF H , QCD scale on $n_i \ge 2$ cross section				-0.04	± 1
Top quarks, generator modeling on α_{top}			+	-0.16	± 1
Electron isolation efficiency	-0.02			-0.14	± 1
				1	
		-(0.1 - 0.05 0 0.05 0	.1	