Rap-up of the session

heavy flavours but mainly with b,

for t, c and s, see talks by T. J. Kim, CP. Shen and K. Vos

Precision theory for precise measurements at LHC and future colliders

Quy-Nhon, Vietnam, 25 September-1 October 2016

T. Nakada

EPFL-IPHYS-LPHE

Lausanne, Switzerland

I was told

"We are organising the Heavy Flavour session, and would like to ask you to wrap up the session. This would involve showing a few slides to stimulate discussion, which you should then lead."

"Speakers are instructed to upload their talks well in advance."

But...

(My) Flavour physics Big Questions

- What is the origins of flavours?
 - Are they common (between the quarks and leptons) or different?
 - -How are the mass matrices generated as observed?

(My) Flavour physics Big Questions

- What is the origins of flavours?
 - Are they common (between the quarks and leptons) or different?
 - -How are the mass matrices generated as observed?
- Mass, Mixing angles and Phases
 - -Just parameters of the Yukawa-coupling constant or something deeper?

(My) Flavour physics Big Questions

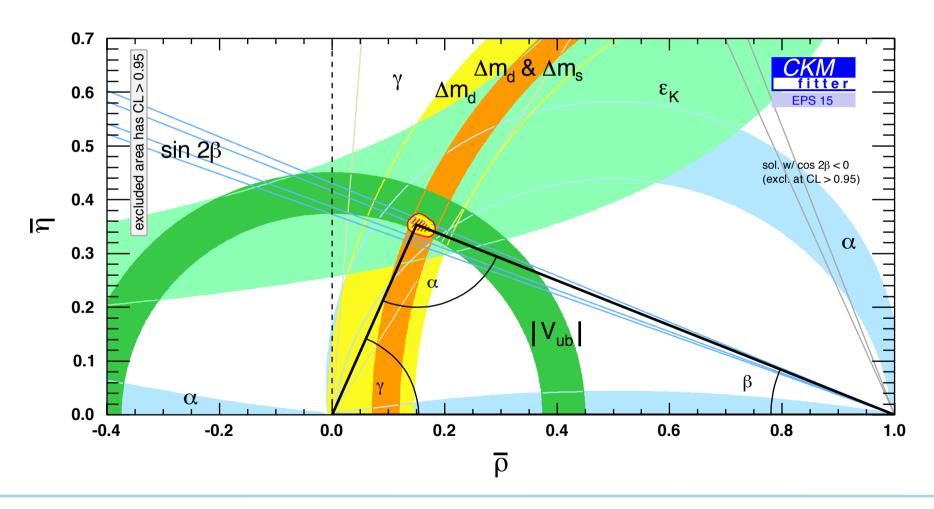
- What is the origins of flavours?
 - Are they common (between the quarks and leptons) or different?
 - -How are the mass matrices generated as observed?
- Mass, Mixing angles and Phases
 - -Just parameters of the Yukawa-coupling constant or something deeper meaning?

Most probably an interesting discussion but a little outside of the scope of this conference...

More relevant issue

• Search for deviations from the Standard Model predictions

More relevant issue


- Search for deviations from the Standard Model predictions
- Some predictions are very "accurate", i.e. forbidden in the Standard Model:
 - Neutrino masses, lepton flavour violating decays, charge non-conserving decays, ...

More relevant issue

- Search for deviations from the Standard Model predictions
- Some predictions are very "accurate", i.e. forbidden in the Standard Model:
 - Neutrino masses, lepton flavour violating decays, charge non-conserving decays, ...
- Others are with a different degrees of theoretical uncertainties
 - Known as Golden channel or silver channel, (Golden channel: CPV in $B_d \rightarrow J/\psi K_S$, $B_s \rightarrow J/\psi \phi$, ...)
 - Kown to suffer from hadronic uncertainties,
 (CPV in the decay amplitudes, ...)

Globally speaking...

• CKM picture looks fine, no room for large BSM any more...

But looking closer (I)

• Long standing problem with $|V_{ub}|$, $|V_{cb}|$ Soumitra Nandi Discrepancies between inclusive and exclusive SL-decays: $\sigma_{\text{experiment}} \lesssim \sigma_{\text{theory}}$

decays: $\sigma_{\text{experiment}} \lesssim \sigma_{\text{theory}}$

FHAG

$$(38.94\pm0.49\pm0.58)\times10^{-3}$$
 (D)
 $(39.45\pm1.42\pm0.88)\times10^{-3}$ (D*) $(3.23\pm0.29)\times10^{-3}$
 $(42.46\pm0.88)\times10^{-3}$ (4.45±0.16±0.22)×10⁻³
 $|V_{ch}|$ inclusive $|V_{uh}|$

But looking closer (I)

• Long standing problem with $|V_{ub}|$, $|V_{cb}|$ Soumitra Nandi Discrepancies between inclusive and exclusive SL-decays: $\sigma_{\text{experiment}} \lesssim \sigma_{\text{theory}}$

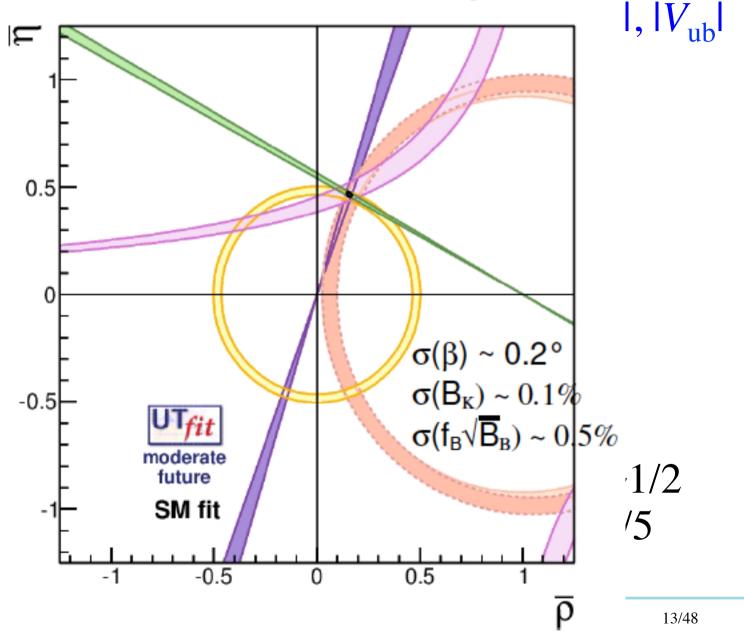
Annoying...

A, ρ and η are vital parameters for the SM predictions!!! NB: Baryonic decay, $\Lambda_b \rightarrow pKlv$ agrees with exclusive result

To me this appears as a QCD problem...

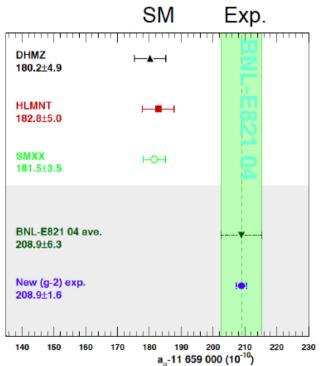
But looking closer (II)

- CKM predictions need accurate tree level $|V_{cb}|$, $|V_{ub}|$ and γ measurements $(A, \rho \text{ and } \eta)$
- Some of the relevant parameters have been measured very well...
 - $-\lg_{\kappa} \log 5 \times 10^{-3}$
 - $-\Delta m_{\rm d}$ to 6×10^{-3}
- σ for β and γ are statistically limited
- We have some flavour "anomalies" now...
- NB:


LHCb Run-2 era (~2020), experimental σ' s ~1/2 Belle II, LHCb upgrade era (~2025), up to <1/5 Can theoretical errors keep up with this?

errors predicted from Belle II + LHCb upgrade

Bona@ICHEP2016


• CKM pre and γ mea

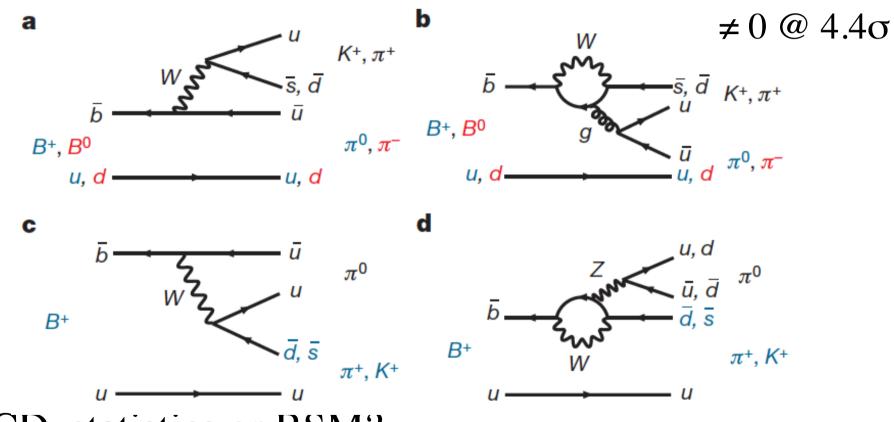
- Some of measured
 - $|\epsilon_{\rm K}|$ to 5
 - $-\Delta m_{\rm d}$ to (
- σ for β an
- We have
- NB: LHCb Rt Belle II, l Can tl

Flavour anomalies (lepton)

- Neutrino oscillations
 - Well established, beyond the basic Standard Model
- muon (g-2) QCD, statistics or BSM?

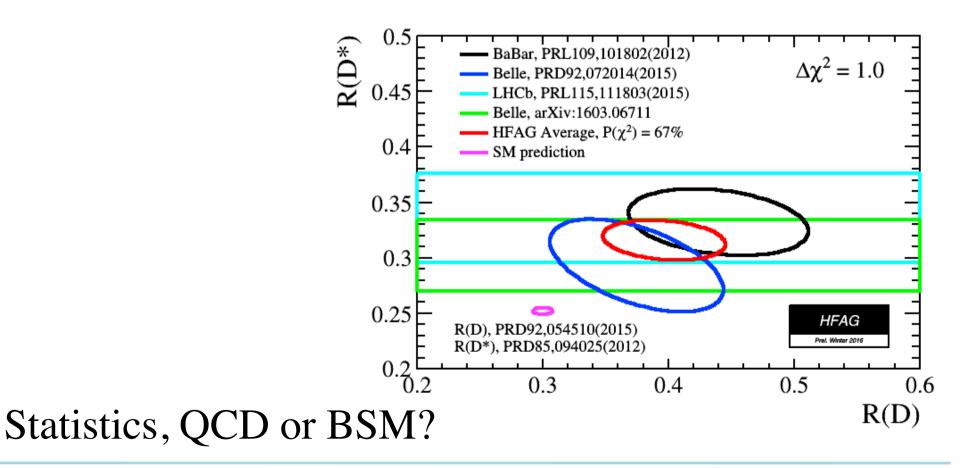
P. Mackenzie

Contribution	Result $(\times 10^{11})$	Error
QED (leptons)	$116\ 584\ 718\ \pm\ 0.14\ \pm\ 0.04_{\alpha}$	0.00 ppm
HVP(lo) [1]	$6~923~\pm~42$	0.36 ppm
HVP(ho)	$-98 \pm 0.9_{\rm exp} \pm 0.3_{\rm rad}$	$0.01~\mathrm{ppm}$
HLbL [2]	105 ± 26	0.22 ppm
EW	154 ± 2 ±1	$0.02~\mathrm{ppm}$
Total SM	$116\ 591\ 802\ \pm\ 49$	0.42 ppm

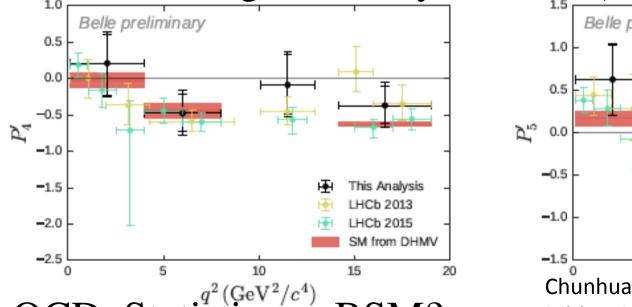

Note that the strong interaction contribution is only $6 \times 10^{-5}!!$

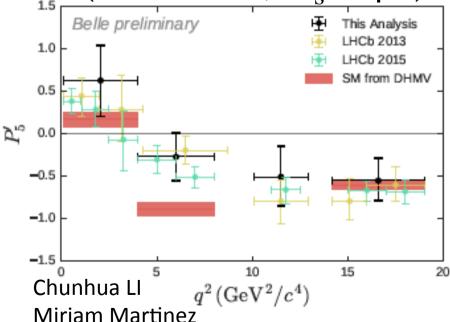
(no longer) Flavour anomalies

- $A_{SL}(B_S)$: sign of large CP violation in B_s - \overline{B}_s oscillation
- Δ_{CP} : large CP violation in D decay amplitudes


• $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$

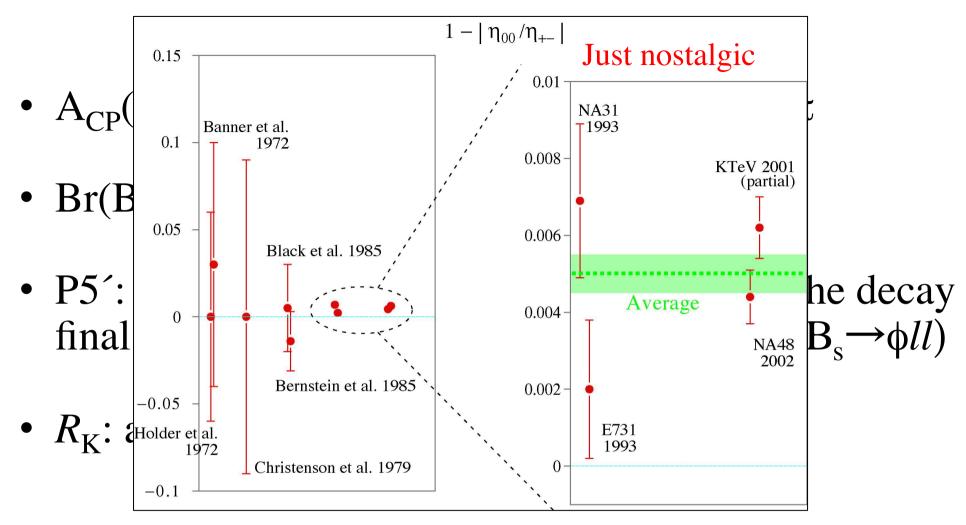
$$\Delta A \equiv A_{K^{\pm}\pi^{0}} - A_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$$


QCD, statistics or BSM?


- $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$
- $Br(B \rightarrow D^{(*0)}\tau \nu)/Br(B \rightarrow D^{(*0)}\mu \nu)$ anomaly

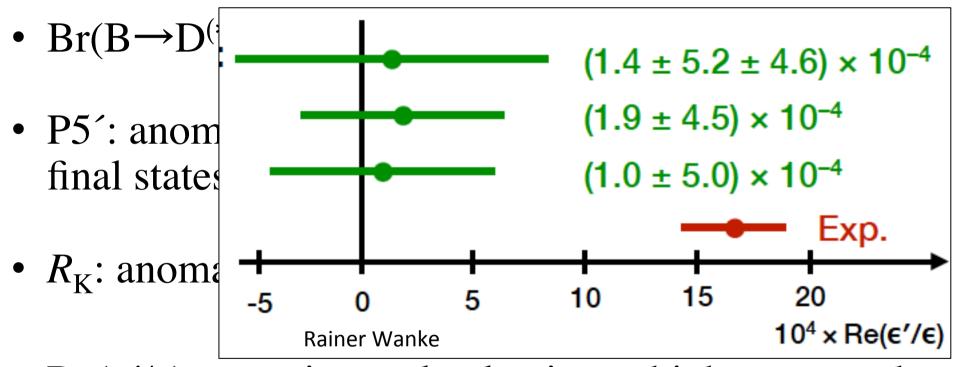
- $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$
- $Br(B \rightarrow D^{(*0)}\tau \nu)/Br(B \rightarrow D^{(*0)}\mu \nu)$ anomaly

• P5': anomaly in the angular distribution of the decay final states generate by $b \rightarrow sl^+l^-$ (B⁰ $\rightarrow K^{*0}ll$, B_s $\rightarrow \phi ll$)



- $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$
- $Br(B \rightarrow D^{(*0)}\tau \nu)/Br(B \rightarrow D^{(*0)}\mu \nu)$ anomaly
- P5': anomaly in the angular distribution of the decay final states generate by $b \rightarrow sl^+l^-$ (B⁰ $\rightarrow K^{*0}ll$, B_s $\rightarrow \phi ll$)
- $R_{\rm K}$: anomalous lepton universality

$$R_K = \frac{\int_{q^2_{\rm min}}^{q^2_{\rm max}} \frac{d\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{dq^2} dq^2}{\int_{q^2_{\rm min}}^{q^2_{\rm max}} \frac{d\Gamma[B^+ \to K^+ e^+ e^-]}{dq^2} dq^2} = 0.745^{+0.090}_{-0.074}({\rm stat}) \pm 0.036({\rm syst})$$


BSM or statistics.

- $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$
- $Br(B \rightarrow D^{(*0)}\tau \nu)/Br(B \rightarrow D^{(*0)}\mu \nu)$ anomaly
- P5': anomaly in the angular distribution of the decay final states generate by $b \rightarrow sl^+l^-$ (B⁰ $\rightarrow K^{*0}ll$, B_s $\rightarrow \phi ll$)
- $R_{\rm K}$: anomalous lepton universality
- Re(ε'/ε): experimental value is too high compared with the recent QCD calculations.

• Re(ε'/ε): experimental value is too high compared with the recent QCD calculations.

• $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$

• Re(ε'/ε): experimental value is too high compared with the recent QCD calculations.

- $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$
- $Br(B \rightarrow D^{(*0)}\tau \nu)/Br(B \rightarrow D^{(*0)}\mu \nu)$ anomaly
- P5': anomaly in the angular distribution of the decay final states generate by $b \rightarrow sl^+l^-$ (B⁰ $\rightarrow K^{*0}ll$, B_s $\rightarrow \phi ll$)
- $R_{\rm K}$: anomalous lepton universality
- Re(ϵ'/ϵ): experimental value is too high compared with the recent QCD calculations. Shouldn't theory be able to calculate the $\Delta I=1/2$ enhancement?

Future improvement?

- $A_{CP}(K\pi)$: anomalous CP violation in $B \rightarrow K\pi$
 - Experimentally relatively easy, theoretically?
- $Br(B \rightarrow D^{(*0)}\tau \nu)/Br(B \rightarrow D^{(*0)}\mu \nu)$ anomaly
 - Experimentally relatively easy, theoretically?
- P5': anomaly in the angular distribution of the decay final states generate by $b \rightarrow sl^+l^-$ (B⁰ $\rightarrow K^{*0}ll$, B_s $\rightarrow \phi ll$)
 - Unique feature to access the Lorentz structure rather than |A| and arg A. Particularly interesting for "minimal flavour violation" scenario? Can QCD calculate the spin structure and polarisation of the hadronic state (resonant, non-resonant)?
- $R_{\rm K}$: anomaly in the lepton universality
 - Experimentally not too difficult, particularly for Belle II

Question to theoreticians?

- Is $A(M \to F) = \left\langle F \middle| H_{\text{effective}}^{\text{weak decay}} \middle| M \right\rangle = \frac{G_F}{\sqrt{2}} \sum_i \xi_{\text{CKM}}^i C_i(\mu) \left\langle F \middle| Q_i(\mu) \middle| M \right\rangle$ framework sacred?
 - Long range initial- and/or final- state interactions?
- What will be the progress in calculating $\langle F|Q_i(\mu)|M\rangle$? HQET, QCD sum rule, PQCD, etc. Any hadronic component in virtual photon?
- Will the lattice QCD be the ultimate? How can one confirm the size of the systematic errors?
- Any clever way to use experimental input to get around hadronic uncertainties? (Keri Vos)
- So far neglected terms, which may not be so small?
- How experiments can help, e.g. for $|V_{ub}|$?