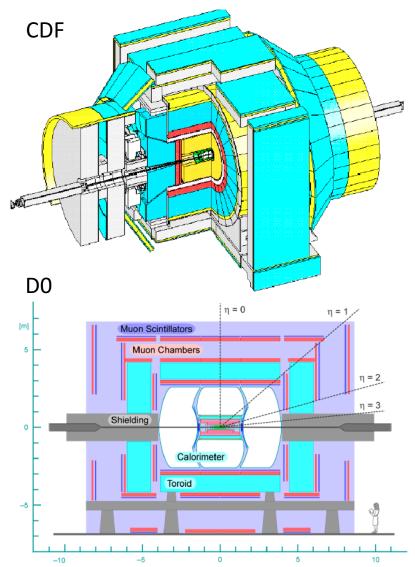


Latest Top/EWK results at Tevatron

Precise theory for precise experiments

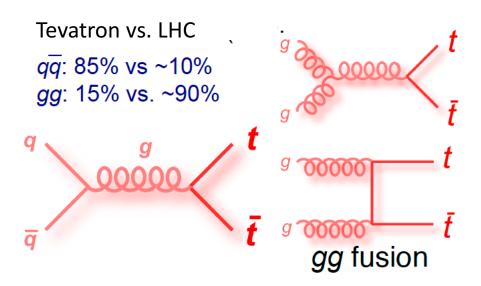
(2016/09/25-2016/10/10) Guy Nhon, ICISE, Vietnam

Youngdo Oh Kyungpook National University

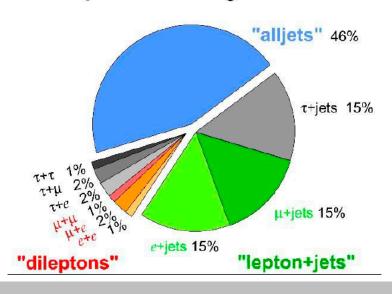


Tevatron

- Proton-antiproton collider , $\sqrt{s} = 1.96 \text{ TeV}$
- Peak luminosities $\sim 3 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- Top quark discovery at 1995
- Shutdown in September 2011
- ~10fb⁻¹/experiments recorded

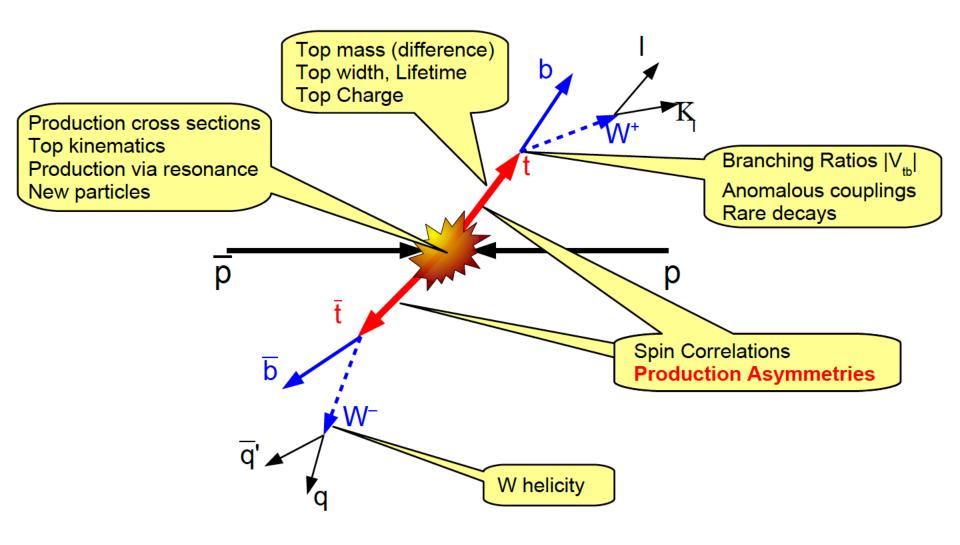


Top quark



- Top the the heaviest fundamental particle : Mtop ~ 173.34 GeV
- Liftetime ~ 5 x 10^{-25} s << Λ_{QCD} We can observe bare quark properties.
- Top pair production

Top pair decay channels


Top Pair Branching Fractions

Top quark physics

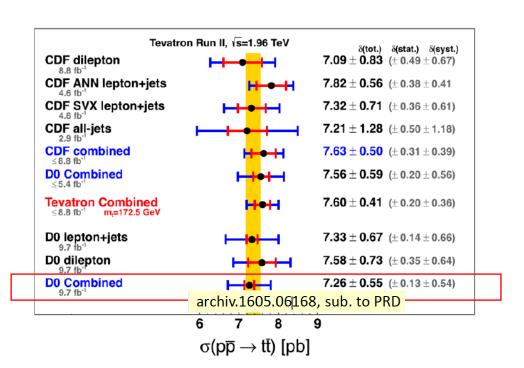
Top Mass – Tevatron combination

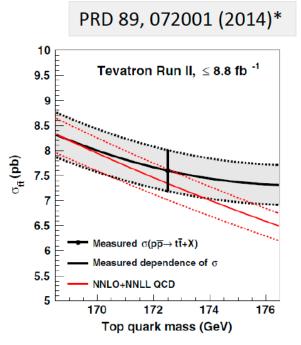
arXiv:1608.01881, D0 Note 6486, CDF Note 11204

Mass of the Top Quark

	July 2016	op Quari	preliminary
CDF-I dilepton	-, = 3	167.4 ±11.4	
D0-I dilepton	-	168.4 ±12.8	(±12.3 ± 3.6)
CDF-II dilepton	-	171.5 ± 3.2	(± 1.9 ± 2.5)
D0-II dilepton *	-	173.50 ±1.5	6 (±1.31± 0.84)
CDF-I lepton+jets		176.1± 7.3	(± 5.1± 5.3)
D0-I lepton+jets		180.1± 5.3	(± 3.6 ± 3.9)
CDF-II lepton+jets	•••	172.85 ±1.1	2 (±0.52± 0.99
D0-II lepton+jets	•	174.98 ±0.7	'5 (±0.41± 0.63)
CDF-I all-jets		186.0 ±11.5	(±10.0 ± 5.7)
CDF-II all-jets		175.07 ±1.9	5 (±1.19±1.55
CDF-II Lxy	•	166.90 ±9.4	3 (±9.00 ± 2.80
CDF-II MET+Jets	•	173.93 ±1.8	5 (±1.26±1.35
Tevatron combination *	•	174.30 ±0.6	55 (±0.35 ± 0.54 (± stat ± syst)
		$\chi^2/dof =$	10.8/11 (46%
150 160	170 m _t (GeV/	180 190 c ²)	200

$m_{\rm t} = 174.30 \pm 0$.35 (stat)	+0.540	(syst)	${ m GeV}$	$/c^2$


	Tevatron combined values (GeV/ c^2)
$M_{ m t}$	174.30
In situ light-jet calibration (iJES)	0.31
Response to $b/q/g$ jets (aJES)	0.11
Model for b-jets (bJES)	0.10
Out-of-cone correction (cJES)	0.03
Light-jet response (1) (rJES)	0.05
Light-jet response (2) (dJES)	0.14
Lepton modeling (LepPt)	0.01
Signal modeling (Signal)	0.36
Jet modeling (DetMod)	0.05
b-tag modeling (b -tag)	0.07
Background from theory (BGMC)	0.04
Background based on data (BGData)	0.07
Calibration method (Method)	0.07
Offset (UN/MI)	0.00
Multiple interactions model (MHI)	0.06
Systematic uncertainty (syst)	0.54
Statistical uncertainty (stat)	0.35
Total uncertainty	0.65



Top pair production cross section

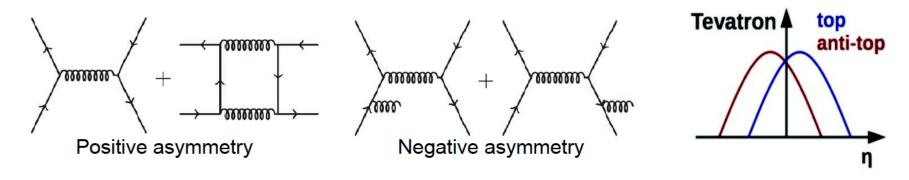
Combination of measurements of $\sigma_{i\bar{i}}$ in the dilepton, ℓ + jets, and all-jets final states, using data collected by the CDF and D0 collaborations, $p\overline{p}$ collision at $\sqrt{s}=1.96\,\mathrm{TeV}$

Combined Cross section:

$$\sigma_{t\bar{t}} = 7.60 \pm 0.41 \text{ pb}$$

 $\sigma_{r\bar{r}} = 7.60 \pm 0.41 \text{ pb}$ 5.4% rel. uncertainty

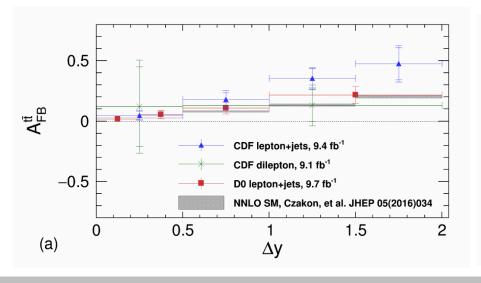
- The latest D0 result not included in Tevatron combination
- The CDF full statistics result is in preparation!

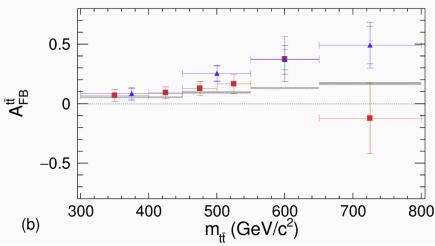

New combination is expected!

Asymmetries of top production

- Asymmetry source :
 - No asymmetry in LO
 - Interference at NLO ==> higher orders with $q\bar{q}$ and qg
 - gg fusion is symmetric

 Asymmetry measurements are based on fully reconstructed top quarks or lepton(s) from top decay


Asymmetries - A_{FB}^{tt}

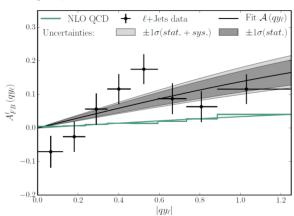


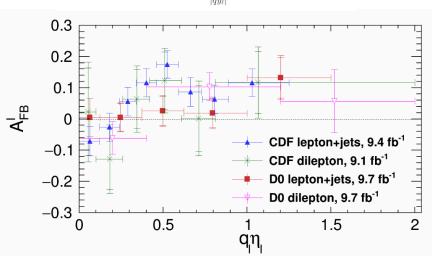
- CDF and D0 measured FB asymmetry in $t\bar{t}$ using Δy (= $y_t-y_{\bar{t}}$) and $m_{t\bar{t}}$ using l+jets and ll channel.
- $A_{FB}^{t\bar{t}}$ depends on Δy and $m_{t\bar{t}}$ linearly.
- $A_{FB}^{t\bar{t}} = 9.5 \pm 0.7 \% \text{ (NNLO SM)}$

Uncertainty	CDF ℓ +jets	CDF dilepton	D0 ℓ +jets	D0 dilepton
Statistical	0.039	0.11	0.027	0.056
Background	0.022	0.04	0.010	0.007
Signal	0.011	0.05	0.005	0.026
Detector	0.007	0.02	0.003	0.001
Method	0.004	0.02	0.005	0.014
PDF	0.001	0.01	0.004	0.003

		Tevatron Preliminary				
Analysis	$A_{ m FB}^{tar{t}}$		ncertain	U	Weight	
Allarysis	A FB	Stat.	Syst.	Total	Weight	
CDF ℓ + jets	0.164	0.039	0.026	0.047	0.25	
CDF dilepton	0.12	0.11	0.07	0.13	0.01	
D0 ℓ + jets	0.106	0.027	0.013	0.030	0.64	
D0 dilepton	0.175	0.056	0.031	0.063	0.11	
Combination	0.128	0.021	0.014	0.025		

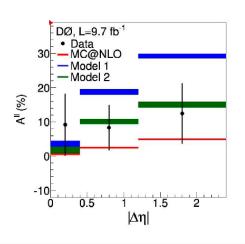
Asymmetries - A_{FB}^{l}

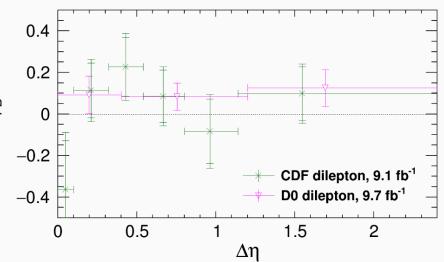

- Lepton asymmetry depends on top pair production asymmetry.
- CDF and D0 measured FB asymmetry of lepton from top decay using l+jets and ll channel.


• $A_{FB}^{l} = 3.8 \pm 0.5 \%$ (NLO SM)

Uncertainty	CDF ℓ + jets	CDF dilepton	D0 ℓ + jets	D0 dilepton
Statistical	0.024	0.052	0.027	0.037
Background	0.015	0.029	$^{+0.016}_{-0.018}$	0.008
Signal	0.0074	negligible	0.008	0.005
Detector	0.0022	0.004	$^{+0.008}_{-0.011}$	0.005
Method	$+0.013 \\ -0.000$	0.006	0.008	0.004
PDF	0.0025	negligible	0.002	

Analysis	$A_{ m FB}^\ell$	U	${\it Uncertainty}$			
Allalysis	$rac{T}{FB}$	Stat.	Syst.	Total	Weight	
CDF ℓ + jets	0.105	0.024	$+0.022 \\ -0.017$	$+0.032 \\ -0.029$	0.40	
CDF dilepton	0.072	0.052	0.030	0.060	0.11	
D0 ℓ + jets	0.050	0.027	+0.020 -0.024	+0.034 -0.037	0.27	
D0 dilepton	0.044	0.037	0.011	0.039	0.23	
Combination	0.073	0.016	0.012	0.020		


Asymmetries - A_{FB}^{ll}



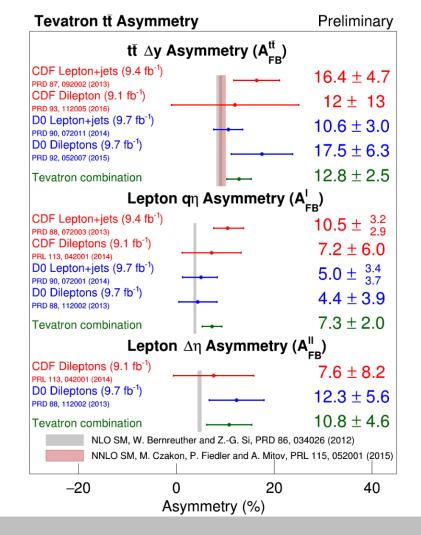
- Lepton asymmetry depends on top pair production asymmetry.
- CDF and D0 measured FB asymmetry of lepton from top decay using l+jets and ll channel.
- A_{FB}^{ll} = 4.8 ± 0.4 % (NLO SM)

Uncertainty	CDF dilepton	D0 dilepton
Statistical	0.072	0.054
Background	0.037	0.009
Signal	negligible	0.009
Detector	0.003	0.006
Method	0.013	0.004
PDF	negligible	

		Tevatron Preliminary				
Analysis	$A_{ m FB}^{\ell\ell}$	U	Weight			
Allalysis	A FB	Stat.	Syst.	Total	Weight	
CDF dilepton	0.076	0.072	0.037	0.082	0.32	
D0 dilepton	0.123	0.054	0.015	0.056	0.68	
Combination	0.108	0.043	0.016	0.046		
				•		

Tevatron A_{FB} - Combination

ullet All symmetries ($A_{FB}^{tar{t}}$ and leptonic A_{FB}) measured by CDF and D0 were combined and

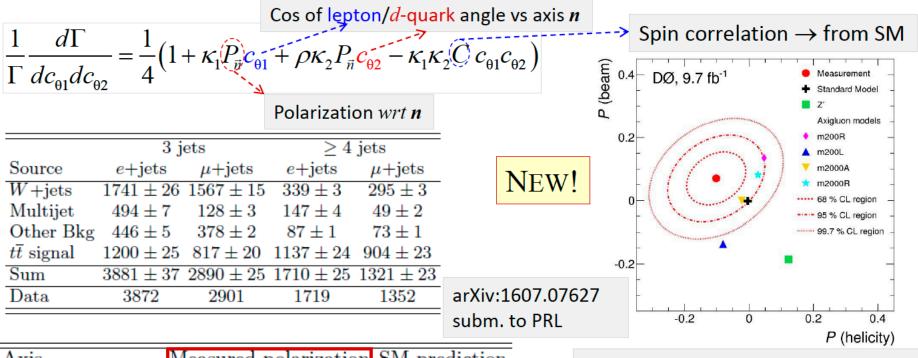

compared with SM predictions.

→ Well agreement with SM

$$A_{FB}^{tt}$$
 = 12.8 ± 2.5 % (CDF + D0)
= 9.5 ± 0.7 % (NNLO SM)

$$A_{FB}^{l}$$
 = 7.3 ± 2.0 % (CDF + D0)
= 3.8 ± 0.5 % (NLO SM)

$$A_{FB}^{ll}$$
 = 10.8 ± 4.6 % (CDF + D0)
= 4.8 ± 0.4 % (NLO SM)



Top quark polarization – D0

Top polarization measured along 3 quantization axes: beam, helicity and transverse.

- ✓ Measurement in ℓ +jets final state contains a lepton + ≥3 jets
- \checkmark Measured polarization: using distributions of leptons along the mentioned 3 axes.

Axis	Measured polarization	SM prediction
Beam	$+0.070 \pm 0.055$	-0.002
Beam - $D0$ comb.	$+0.081 \pm 0.048$	-0.002
Helicity	-0.102 ± 0.061	-0.004
Transverse	$+0.040 \pm 0.034$	+0.011

2D visualization of longitudinal top polarizations in ℓ +jets ch. along beam and helicity axes compared with SM and BSM

Top quark spin correlation – D0

Top quark lifetime, $\tau_t \approx 5 \cdot 10^{-25} s$ << spin-decorrelation time, $\tau_{\rm spin} \approx 3 \cdot 10^{-21} s$

 \Rightarrow QCD: unpolarized t and \overline{t} quarks, but the spins of t and \overline{t} are correlated.

Spin correlation observable:

 $\sigma(..) \equiv$ cross section referred to spin state of q and \overline{q} relative to quantization axes

$$O = \frac{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) - \sigma(\uparrow\downarrow) + \sigma(\downarrow\uparrow)}{\sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow) + \sigma(\downarrow\downarrow) + \sigma(\uparrow\downarrow)}$$

✓ Matrix element technique applied to dilepton ($\ell\ell$) and ℓ +jets final state

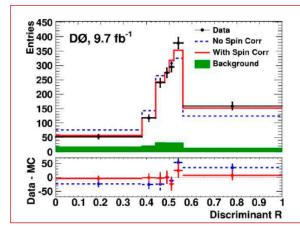
NEW!

- \checkmark Tevatron vs LHC spin correlations: $q\overline{q}$ annihil. vs like-helicity gg fusion (complement.)
- ✓ Spin correlation discriminant event-by-event:

$$R(x) = \frac{P_{t\bar{t}}(x, SM)}{P_{t\bar{t}}(x, SM) + P_{t\bar{t}}(x, null)}$$
 Probability for SM/null (uncorrelated) hypotesis

✓ Off-diagonal spin basis (max. correlations for $p\overline{p}$)

$$O_{\text{off}} = 0.89 \pm 0.16 \text{(stat)} \pm 0.15 \text{(syst)}$$
 SM: $O_{\text{off}} = 0.80^{+0.01}_{-0.02}$

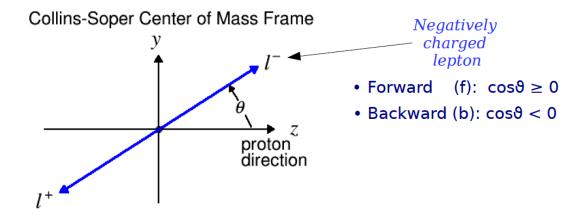

Significance from zero: 4.2 σ

Assuming absence of non-SM \rightarrow fraction of gg fusion:

$$f_{gg} = 0.08 \pm 0.16 \text{ (stat+syst)}$$
 SM (NLO): $f_{gg} = 0.135$

SM (NLO):
$$f_{gg} = 0.135$$

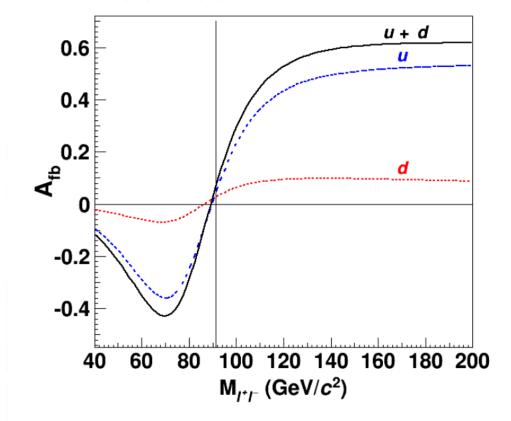
PLB 757, 199 (2016)



Effective leptonic electroweak mixing angles

- Drell-Yan process at the Tevatron
 - lepton polar anlgle distribution at center of mass frame is asymmetric
 - Parity violation of Z decays.
 - Born level angular distribution ~ 1+cos²9+A₄cos9

Forward-backward cross section symmetry is a probe to the electroweak mixing angle


$$A_{fb} = \frac{\sigma_f - \sigma_b}{\sigma_f + \sigma_b} = \frac{3}{8} A_4$$

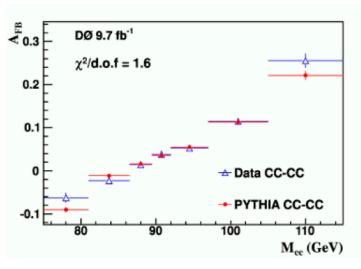
Extraction of EW angle

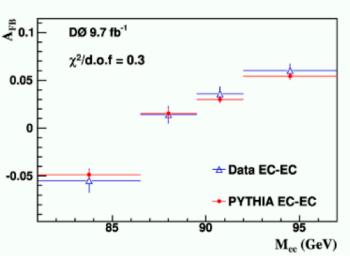
$$A_{\text{fb}}(M) = \frac{\sigma^{+}(M) - \sigma^{-}(M)}{\sigma^{+}(M) + \sigma^{-}(M)} = \frac{3}{8}A_{4}(M)$$

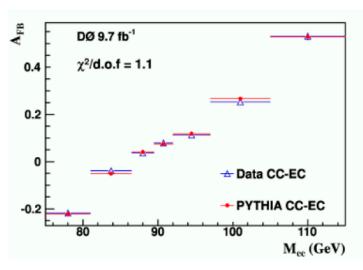
 $A_{fb}^{(u)}$: u-quark contribution $A_{fb}^{(d)}$: d-quark contribution $A_{fb}^{(u)} + A_{fb}^{(d)} = A_{fb}^{(u+d)}$

- Measure asymmetry in mass bins $A_{fb} = (N_f N_b)/(N_f + N_b)$
- Fit A_{fb} to templates with varying values of $\sin^2 \theta_{eff}^{-lept}$ to get best-fit value
- Experimental effects applied to templates or corrected in A_{ff}

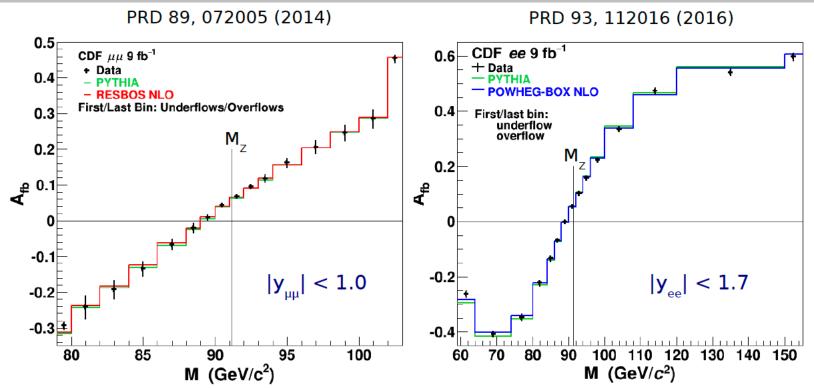

Expectation:


- Z-Z interference term: sensitive to $\sin^2 \theta_{eff}^{-lept}$ best precision near M₇
 - most events at the pole
 - minimal γ-Z interference
- γ -Z interference term: zero at Z pole [$\sim 1-(M_Z/M)^2$] dominates away from pole sensitive to PDFs


Extraction of $sin^2\theta_{eff}^{lept}$: **D0**



PRL 115, 041801 (2015), PRD 84, 012007 (2011)


Input

- Afb and template (Pythia) with varying $sin^2 heta_{eff}^{lept}$
- Fit Afb to templates for best $sin^2 heta_{eff}^{lept}$

Result
$$\sin^2 \theta_{\rm eff}^{\rm lept} = 0.23139 \pm 0.00043 \text{ (stat.)}$$
 $\pm 0.00008 \text{ (syst.)}$ $\pm 0.00017 \text{ (PDF)}.$

Extraction of $sin^2\theta_{eff}^{lept}$: **CDF**

Muon channel

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.2315 \pm 0.0009 \text{ (stat.)}$$

$$\pm 0.0002 \text{ (syst.)}$$

$$\pm 0.0004 \text{ (PDF)}.$$

Electron channel

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23248 \pm 0.00049 \text{ (stat.)}$$

$$\pm 0.00004 \text{ (syst.)}$$

$$\pm 0.00019 \text{ (PDF)}$$

muon + electron

$$\sin^2 \theta_{\rm eff}^{\rm lept} = 0.23221 \pm 0.00043 \text{ (stat.)}$$

$$\pm 0.00007 \text{ (syst.)}$$

$$\pm 0.00016 \text{ (PDF)}$$

Combination of $sin^2\theta_{eff}^{lept}$: CDF + D0

Input observable values

- Standardized D0 value : 0.23137 ± 0.00043 (stat) ± 0.00019 (syst) - CDF ee⊕μμ value : 0.23221 ± 0.00043 (stat) ± 0.00018 (syst)

Input uncertainty categories

- Statistics: CDF: 0.00043, D0: 0.00043

- PDF: CDF: 0.00016, D0: 0.00017 (100% correlated)

- Other systematics: CDF: 0.00007, D0: 0.00008 (uncorrelated)

Results of BLUE method

$$-\sin^2\theta_{eff}^{lept} = 0.23179 \pm 0.00030 \text{ (stat)}$$

 $\pm 0.00017 \text{ (syst)}$

 $-\chi^2$ of combination: 1.8 (18% probability)

- Uncertainties

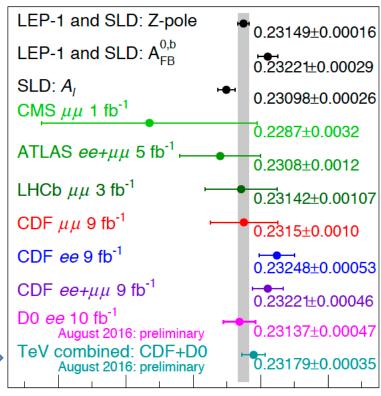
Statistics: 0.00030 PDF: 0.00017 Other systematics: 0.00005 Standardization: 0.00003

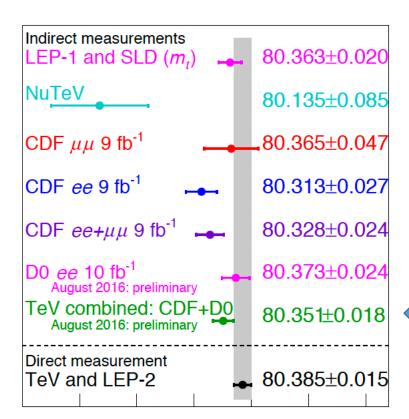
Inference of W mass

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \text{Re}[\kappa_l(M_Z^2, \sin^2 \theta_W)] \sin^2 \theta_W$$

\$\imp \alpha 1.037\$

 $\sin^2\theta_w$ and M_w equivalent in SM on-shell renormalization scheme (ZFITTER)


- $-\sin^2\theta_w \equiv 1 M_w^2/M_z^2$ all orders definition
- M $_{_{7}}$ well measured by LEP-1 and SLD: 91.1875 \pm 0.0021 GeV/c 2


Inferences

	si	$n^2\theta_w$		M_{w}	
– CDF only:	0.22400±0.	00041±0	0.00019	80.328±0.021=	±0.010 GeV/c ²
– D0 only:	0.22313±0.	00041±0	0.00020	80.373±0.021±	±0.010 GeV/c ²
- Combination:	0.22356±0.	00029±0	0.00019	80.351±0.015	±0.010 GeV/c ²
	((stat)	(syst)	(stat)	(syst)

80 80.1 80.2 80.3 80.4 80.5 80.6 W-boson mass (GeV/*c*²)

Summary

- CDF and D0 provided remarkable results on top quark properties
 - Top mass
 - Top antitop pair production cross section
 - Asymmetries in top antitop production
 - Top spin correlation and polarization
- $sin^2\theta_{eff}^{lept}$ are extracted from Drell-Yan lepton pair asymmetry
 - CDF used electron and muon channel, D0 used electron channel
 - Both of CDF and D0 are combined
 - Indirectly, W mass is extracted.
- Results from CDF and D0 are still coming and some of them are under combining ...
 - www-cdf.fnal.gov , www-d0.fnal.gov