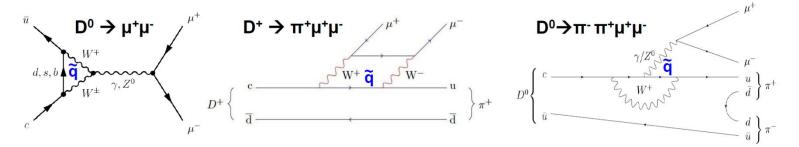
Status of rare charm decays

Rencontres du Vietnam 2016

Chengping Shen


Beihang University

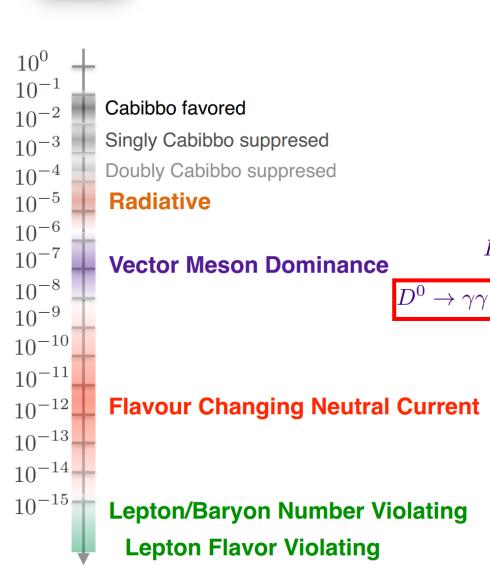
BELLE

25 September - 2 October, 2016, Quy Nhon, Vietnam

Rare decay

• Flavor Changing Neutral Currents (FCNC) are suppressed in the Standard Model (SM), only possible via loops. Like:

• However, there are many compelling reasons to believe SM can not be the full story.


• Rare decays can be used for indirect searches of NP since they are suppresses or forbidden in SM and highly sensitive to NP effects.

• Charm provides an interesting test bed for NP as SM footprints in this sector are tiny owing to large GIM/CKM suppression

Rare Charm decay

$$D^{0} \to \mu^{-} \mu^{+} \qquad D \to h \ell^{+} \ell^{-}$$
$$D^{0} \to e^{-} e^{+} \qquad D \to h h' \ell^{-} \ell^{+}$$
$$D \to V \ell^{+} \ell^{-}$$

 $D^0 o \overline{K}^{*0} \gamma, \ \phi \gamma, \ \omega \gamma, \ \rho^0 \gamma$

 $D^{0} \to \phi V(\to \ell\ell), \ K^{-}K^{+}V(\to \ell\ell)$ $D^{0} \to \overline{K}^{*0}V(\to \ell\ell), \ K^{+}\pi^{-}V(\to \ell\ell)$

 $D \to (h)e^{-}\mu^{+}$ $D \to (h)\ell^{+}\ell^{+}$

 $D^0 \to \rho V (\to \ell \ell), \ \pi^- \pi^+ V (\to \ell \ell)$

3

General analysis strategy

Selection using the typical features for the searched decays.

 Very rare means very high relative combinatorial background
 > Use Multivariate Analysis $p \qquad D^{*+} \qquad p \qquad 0 \qquad \mu^{-} \qquad P \qquad P^{+} \qquad P^{+} \qquad P^{+} \qquad P^{+} \qquad P^{-} \qquad P^{$

Another difficulty with charm decays: very high peaking backgrounds (Ex: D→ππ > 10⁶ × D→µµ)

→ Use particle identification to fight against π → μ misID

Normalized Measurements to help controlling the systematics

 $BF_{(signal)} = BF_{(norm)} \frac{\varepsilon_{(norm)}}{\varepsilon_{(signal)}} \frac{N_{(signal)}}{N_{(norm)}} \qquad \qquad \text{Ex. : } D^+ \rightarrow \pi^+ \mu^+ \mu^- \\ \text{and } D^+ \rightarrow \pi^+ \varphi(\mu^+ \mu^-)$

Blind analyses, Upper limits from the CLs method [A. Read, J. Phys. G28 (2002)]

Looking for New Physics in rare SM processes $D^0 \rightarrow \gamma \gamma$

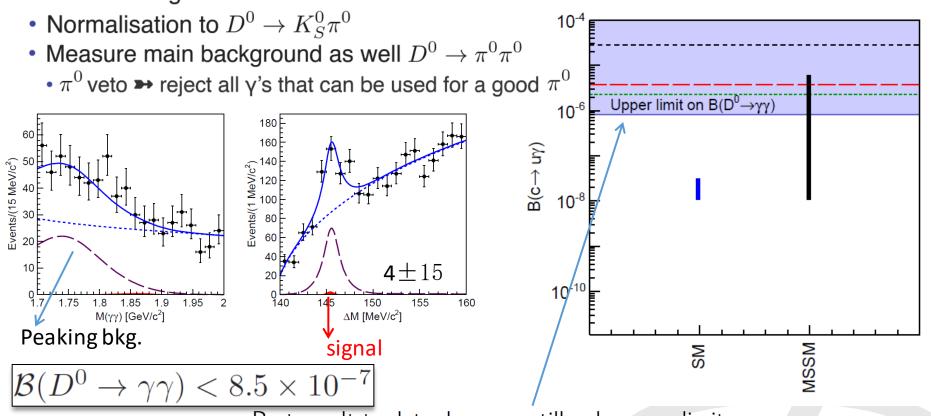
- FCNC: forbidden at tree level, loop: CKM and GIM suppressed
- Very rare process in SM: NP contribution could be substantial

Model	Br	Reference
SM, VMD	$(3.5^{+4.0}_{-2.6}) imes 10^{-8}$	Burdman [PRD 66, 014009 (2002)]
SM, HQ χ PT	$(1.0\pm0.5) imes10^{-8}$	Fajfer [PRD 64, 074008 (2001)]
MSSM	6×10^{-6}	Prelovšek [PLB 500, 304 (2001)]

Table: Theoretical calculations.

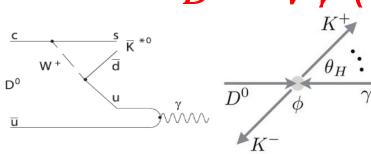
Group	\sqrt{s}	Data (fb $^{-1}$)	<i>Br</i> UL @90%CL	Reference
CLEO	10.58 GeV	13.8	$< 2.9 imes 10^{-5}$	PRL 90, 101801 (2003)
BaBar	10.58 GeV	470.5	$< 2.2 imes 10^{-6}$	PRD 85, 091107
BESIII	3.77 GeV	2.92	$< 3.8 imes 10^{-6}$	PRD91, 112015 (2015)

Table: Previous measurements.

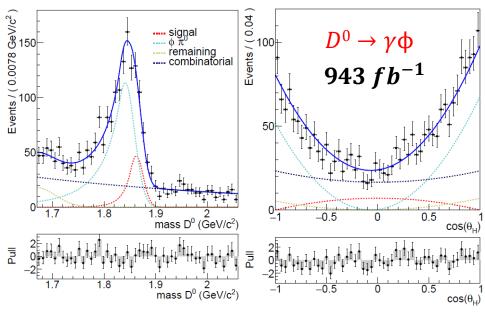

Determine $\mathcal{B}r$ via a **normalisation channel**: $D^0 \to K_S^0 \pi^0$

$$\mathcal{B}r(D^0 \to \gamma\gamma) = \frac{\mathcal{N}(D^0 \to \gamma\gamma)}{\mathcal{N}(D^0 \to \mathcal{K}_S^0 \pi^0)} \times \frac{\varepsilon_{\mathcal{K}_S^0 \pi^0}}{\varepsilon_{\gamma\gamma}} \times \mathcal{B}r(D^0 \to \mathcal{K}_S^0 \pi^0)$$

Signal yield extraction


Use a D* tag

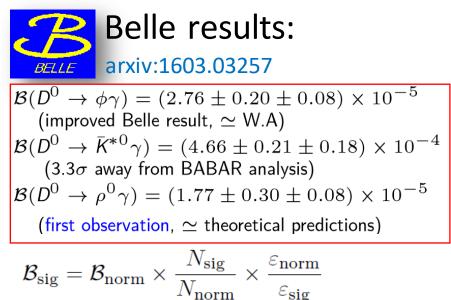
PRD 93, 051102(R) (2016)



- Best result to date, however still only upper limit.
- Larger data samples needed in order to further improve the measurents.

$D \rightarrow V\gamma (V = \phi, \overline{K}^{*0}, \rho^0)$

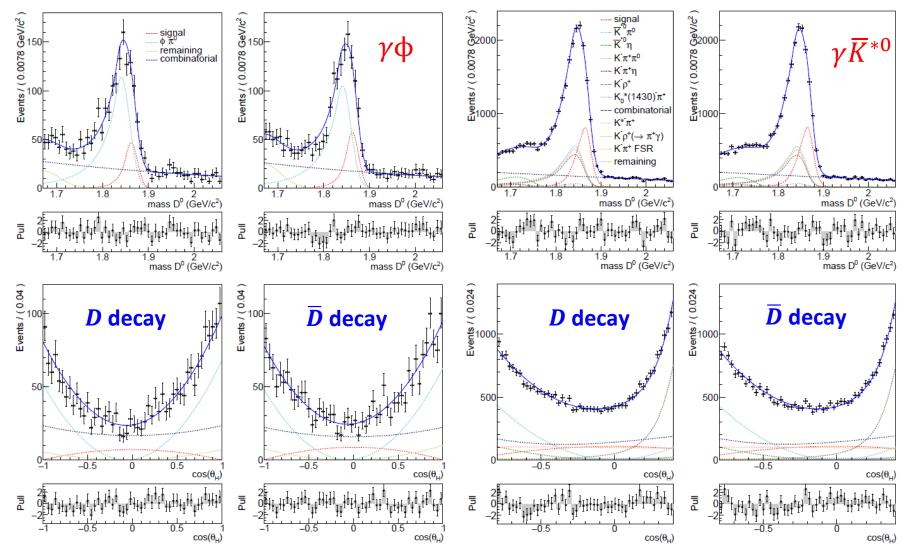
- Dominated by long-range contibution
- Sensitive to New Physics via CP asymmetry Phys. Rev. Lett. 109, 171801
- $M_{V\gamma}$ and $\cos\theta_H$ 2-dimension fit

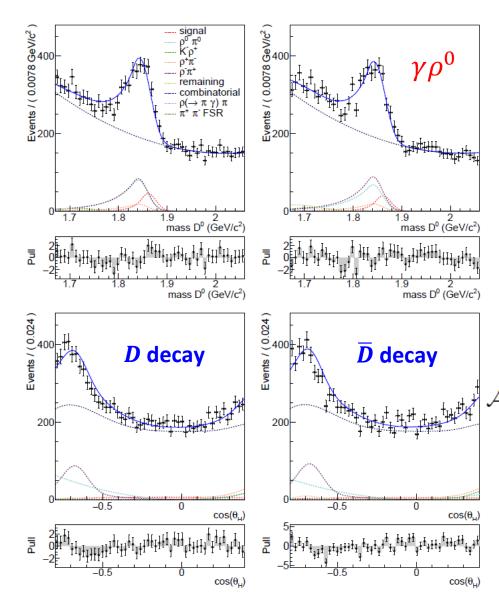

PRD78,071101(2008)

 $M_{V\gamma}$ and $\cos \theta_H$ 2-dimension fit:

 $\mathcal{B}(D^0 \to \phi \gamma) = (2.78 \pm 0.30 \pm 0.27) \times 10^{-5}$ only $M_{V\gamma}$ fit, and $\cos \theta_H$ consistency check:

 $\mathcal{B}(D^0 \to \bar{K}^{*0}\gamma) = (3.28 \pm 0.20 \pm 0.27) \times 10^{-4}$


(first observation)


Normalized modes: $D \rightarrow K^{+}K^{-}(\phi \text{ mode}); K^{-}\pi^{+}(K^{*}_{7} \text{ mode})$ $\pi^{+}\pi^{-}(\rho^{0} \text{ mode})$

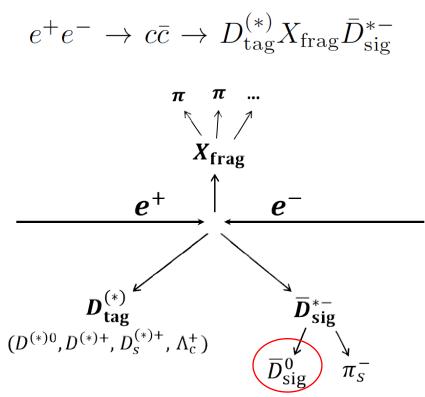
 $D \rightarrow V\gamma (V = \phi, \overline{K}^{*0}, \rho^0)$

arxiv:1603.03257

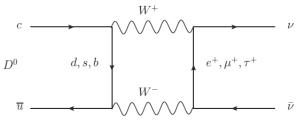
 $D \rightarrow V\gamma (V = \phi, \overline{K}^{*0}, \rho^0)$

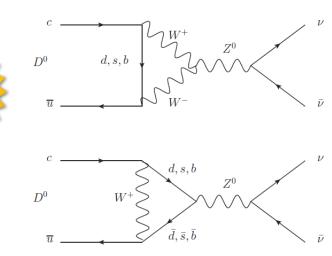
• In radiative Charm decays: $\mathcal{A}_{CP}^{V\gamma}$ > 3% means signal for NP

(Phys. Rev. Lett. 109, 171801)


$$A_{\text{raw}} = \frac{N(D^0) - N(\overline{D}^0)}{N(D^0) + N(\overline{D}^0)}$$
$$\mathcal{A}_{CP}^{\text{sig}} = A_{\text{raw}}^{\text{sig}} - A_{\text{raw}}^{\text{norm}} + \mathcal{A}_{CP}^{\text{norm}}$$

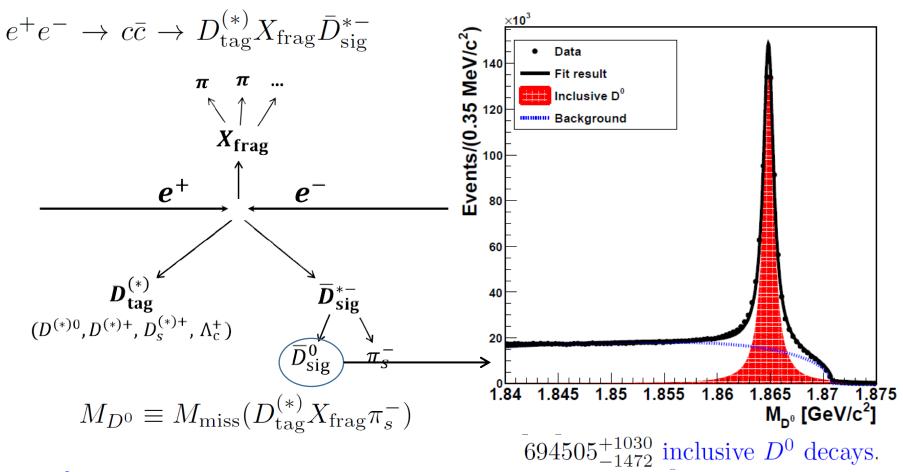
 $\begin{aligned} & \operatorname{arxiv:1603.03257} \\ \mathcal{A}_{CP} \left(D^0 \to \phi \gamma \right) = -(0.094 \pm 0.066 \pm 0.001) \\ \mathcal{A}_{CP} \left(D^0 \to \overline{K}^{*0} \gamma \right) = -(0.003 \pm 0.020 \pm 0.000) \\ \mathcal{A}_{CP} \left(D^0 \to \rho^0 \gamma \right) = -0.056 \pm 0.151 \pm 0.006 \end{aligned}$


No observation of CP asymmetry Higher precision needed


$D^0 \rightarrow \text{invisible final states}$

- D meson to $\nu\overline{\nu}$ is helicity suppressed in SM with Br~1.1x10^{-30}
- Under different DM models the Br can reach O(10⁻¹⁵)
 PLB651, 374(2007); Phys.Rept.117,75(1985)
- Use charm tagger method to select an inclusive D⁰ sample which allows the identification of D⁰ invisible decays

An illustration of the charm tagger method. $M_{D^0} \equiv M_{\rm miss}(D_{\rm tag}^{(*)}X_{\rm frag}\pi_s^-)$

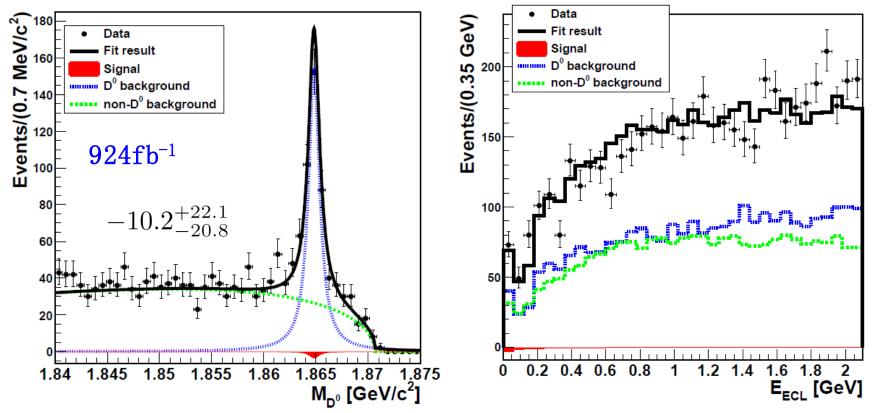


Decay diagrams of $D^0 \to \nu \bar{\nu}$.

 $\cdot X_{\text{frag}}$: a few unflavored mesons Four types of D_{tag} are reconstructed using 23 decay modes D^* are reconstructed in five decay

 D^*_{tag} are reconstructed in five decay modes: $D^0\pi^+$, $D^+\pi^0$, $D^0\pi^0$, $D^0\gamma$, $D_s^+\gamma$

$D^0 \rightarrow \text{invisible final states}$

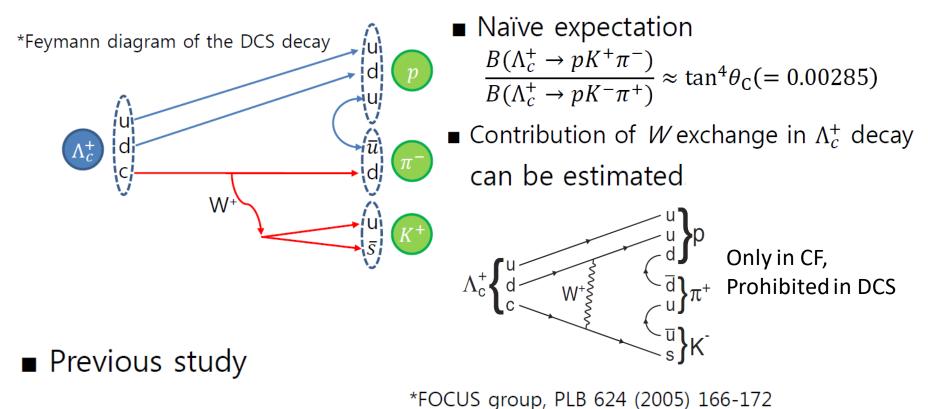


• $D^0 \rightarrow$ invisible decays are selected by requiring no remaining final states associated with $\overline{D^0}_{tag}$

- The residual energy in the ECL, E_{ECL} , is used to extract signal events
- 2D fit: M(D⁰), E_{ECL}

$D^0 \rightarrow \text{invisible final states}$

• 2D fit: M(D⁰), E_{ECL}

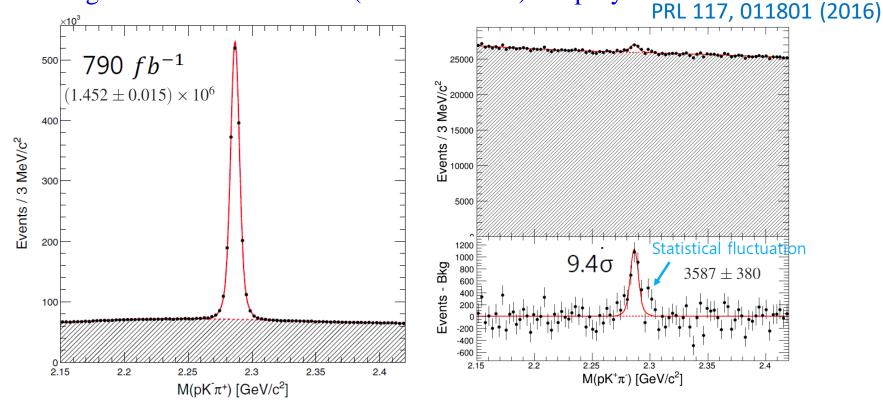


No significant signal yield is found

 \cdot Br(D⁰ \rightarrow invisible decays)<8.8x10⁻⁵ @ 90%C.L. with sys errors included

·Large data sample is needed to improve the UL.

First Observation of DCS $\Lambda_c^+ \rightarrow p \ K^+ \pi^-$

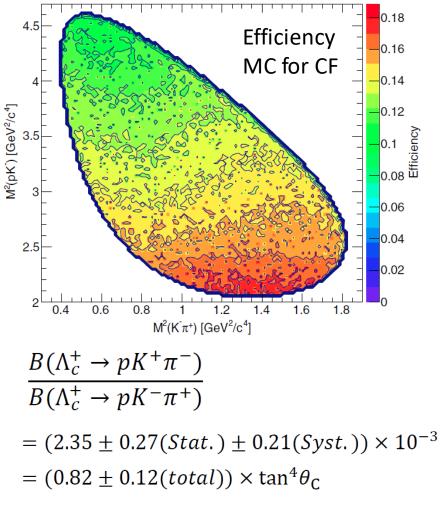


→FOCUS group reported a negative result. It is the first observation of DCS decay of a charmed baryon.

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

First Observation of DCS $\Lambda_c^+ \rightarrow p K^+ \pi^-$

• Fitting functions: 2 Gaussians (common mean) + a polynomial



■ Peaking background from single Cabibbo-suppressed (SCS) decay, $\Lambda_c^+ \to \Lambda K^+$; $\Lambda \to p\pi^$ $s(SCS) = \frac{BR(SCS)}{BR(CF)} \times \frac{\epsilon(SCS)}{\epsilon(CF)} \times s(CF)$,

where $\frac{BR(SCS)}{BR(CF)} = 0.61 \pm 0.13$ % (PDG2014), $\frac{\epsilon(SCS)}{\epsilon(CF)} = 0.023$, and $s(CF) = 1.452 \times 10^6$.

 \rightarrow The estimated yield is 208 events.

First Observation of DCS $\Lambda_c^+ \rightarrow p K^+ \pi^-$

	• • •					
	■ Relative efficiency	117, 011801 (2016)				
	$\rightarrow \epsilon(\Lambda_c^+, CF)/\epsilon(\Lambda_c^+, DCS)$ from MC study					
	e	$\epsilon = \frac{\sum_{i} \epsilon_{i} BR_{i}}{\sum_{i} BR_{i}},$				
	Sub Channel of CF decay, $\Lambda_c^+ \rightarrow p K^- \pi^+$	Branching Ratio *PDG2014				
	$p\overline{K}^*(892)^0; \overline{K}^*(892)^0 \rightarrow K^-\pi^+$	0.21±0.03				
	$\varDelta(1232)^{++}K^{-};\varDelta(1232)^{++} \rightarrow p\pi^{+}$	0.17±0.04				
	$\Lambda(1520)\pi^+;\Lambda(1520)\to pK^-$	0.08±0.02				
_	$pK^-\pi^+$ (non-resonant)	0.55±0.06				
	Sub Channel of DCS decay $\Lambda_c^+ \rightarrow p K^+ \pi^-$	Branching Ratio				
	$pK^*(892)^0$; $K^*(892)^0 \rightarrow K^+\pi^-$	0.23				
	$\varDelta(1232)^{0}K^{+}; \varDelta(1232)^{0} \rightarrow p\pi^{-}$	0.18				
	$pK^+\pi^-$ (non-resonant)	0.59				

→ W exchange does not make a large contribution. → $BR(DCS) = (1.61 \pm 0.23(total)^{+0.07}_{-0.08}(CF)) \times 10^{-4}$, by using $BR(CF) = (6.84^{+0.32}_{-0.40}) \times 10^{-2}$ (PRL, 113, 042002(2014))⁵

Summary

- The rare decay $D^0 \rightarrow \gamma \gamma$ using 832fb^{-1} data is searched for, but no significant signal is seen and the most restrictive limit $B(D^0 \rightarrow \gamma \gamma) < 8.5 \times 10^{-7} @ 90\%$ C.L. is set.
- Brs and Acp in $D^0 \rightarrow \gamma V$ ($V = \phi, \overline{K}^{*0}, \rho^0$) are measured. The $Br(D^0 \rightarrow \gamma \phi)$ is improved. The $Br(D^0 \rightarrow \gamma \overline{K}^{*0})$ is 3.3 σ away from BaBar result. First observation of $D^0 \rightarrow \gamma \rho^0$. No observation of CP asymmetry in any of these three modes is observed.
- The first search for D⁰ decays into invisible final states is performed. No significant signal is found and the upper limit on Br is 8.8x10⁻⁵ @ 90% C.L.
- The DCS $\Lambda_c^+ \rightarrow p K^+ \pi^-$ is clearly observed for the first time for a charmed baryon. The W-exchange contribution is small.
- BelleII construction is ongoing. The 50 ab⁻¹ data is expected by 2024. Rare charm decays can be performed better especially for the modes with neutral tracks.
 Thanks! 16

- Large samples of charm
- Good background rejection and high signal efficiency
 - excellent particle identification
 - large boost → displaced vertex
 - excellent reconstruction of photons and neutral pions
 - hermeticity of detector

