

Searches and prospects for rare top decays at ATLAS and CMS

Tae Jeong Kim (Hanyang University) on behalf of the ATLAS and CMS collaboration

> For Precision Theory 2016 26/09/2016 at Quy Nhon, Vietnam

Tae Jeong Kim (HYU)

Outline

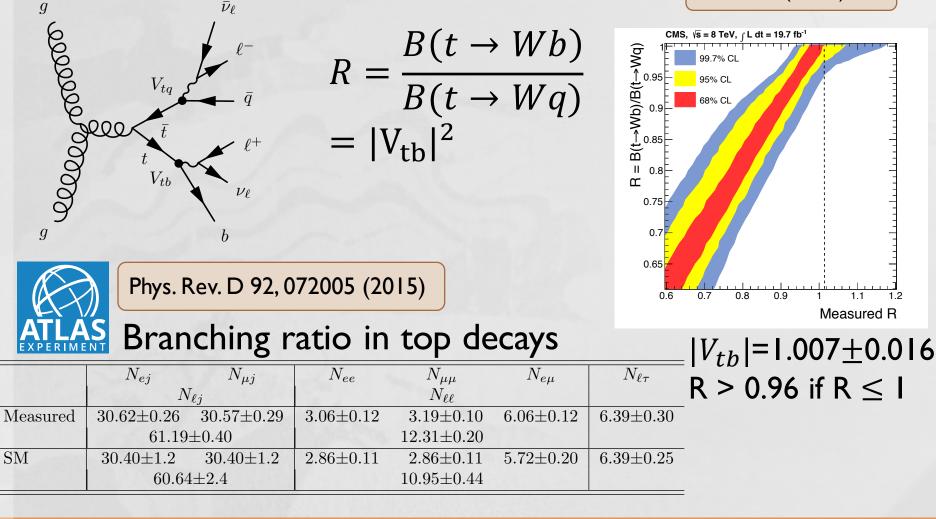
- Introduction
- Motivation
- Rare top decays through charged particle
- Rare top decays through neutral particle
- Perspectives at 14 TeV
- Conclusion

Introduction

- Top quark decays before hadronization.
 - almost 100% decays to b-quark and W boson in the SM.
- Decay to lighter down-type quarks (d or s) are allowed but suppressed due to CKM matrix.
- Flavor changing neutral currents (FCNC)
 - Transitions that change the flavor of a fermion without changing its charge.
 - FCNC is suppressed by GIM mechanism (can occur only at quantum loop corrections).
 - In the SM, the branching ratio of FCNC is expected to be smaller than 10^{-12} .

Motivation

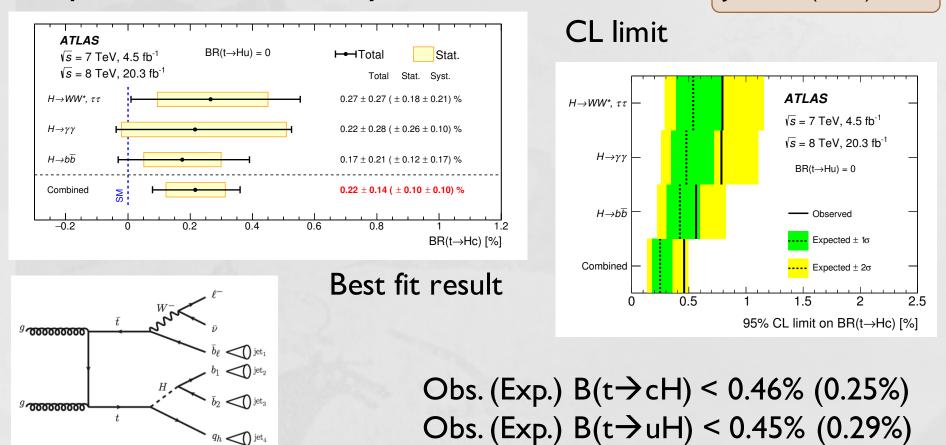
- FCNCs are enhanced in many beyond the SM.
- Any small deviation would indicate new physics.
- Top rare decay should be sensitive to new physics already.
- Model independent searches using effective Lagrangian were pursued.
- More 2 M events produced with 30 fb^{-1} for Run2.


	SM	QS	2HDM	FC 2HDM	MSSM	₽ SUSY
$t \rightarrow uZ$	8×10^{-17}	1.1×10^{-4}	_	_	2×10^{-6}	3×10^{-5}
$t ightarrow u \gamma$	3.7×10^{-16}	$7.5 imes 10^{-9}$	—	_	2×10^{-6}	1×10^{-6}
t ightarrow ug	3.7×10^{-14}	1.5×10^{-7}	_	—	8×10^{-5}	2×10^{-4}
$t \rightarrow uH$	2×10^{-17}	4.1×10^{-5}	$5.5 imes 10^{-6}$	-	10^{-5}	$\sim 10^{-6}$
$t \rightarrow cZ$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	2×10^{-6}	3×10^{-5}
$t \to c \gamma$	4.6×10^{-14}	$7.5 imes 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}
$t \to cg$	4.6×10^{-12}	$1.5 imes 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}
$t \to c H$	3×10^{-15}	4.1×10^{-5}	$1.5 imes 10^{-3}$	$\sim 10^{-5}$	10^{-5}	$\sim 10^{-6}$

arXiv:hep-ph/0409342

Searches for $t\bar{t}, t \rightarrow qW$

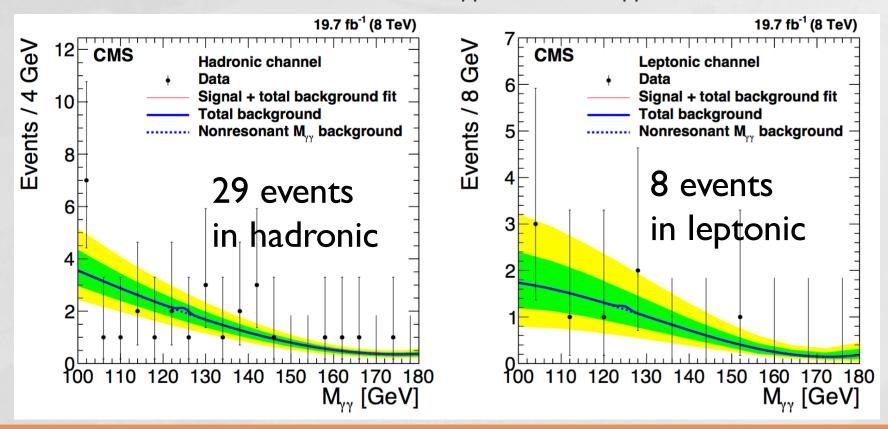
PLB 736 (2014) 33



Tae Jeong Kim (HYU)

 $t\bar{t}, t \rightarrow qH$ at ATLAS

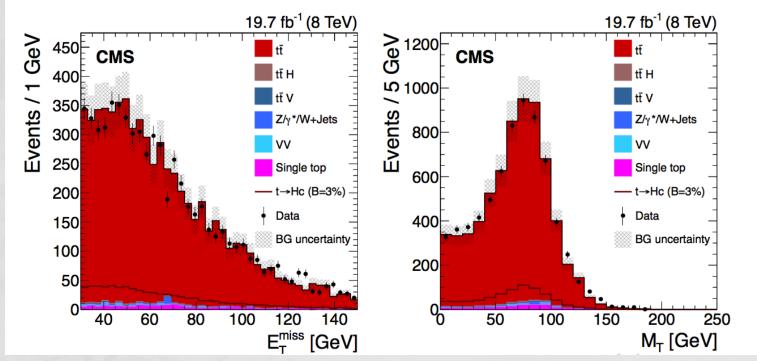
• Combination of $H \rightarrow bb$ with $H \rightarrow \gamma\gamma$ and $H \rightarrow WW^*, \tau\tau$ improves the sensitivity.



$t\bar{t}, t \rightarrow qH$ at CMS (8 TeV)

19.7 fb⁻¹ at 8 TeV CMS-PAS-TOP-13-007 (paper in preparation)

- Combination of $H \rightarrow \gamma \gamma$, bb, WW, ZZ, $\tau \tau$ decay modes.
- Most sensitive channel in $H \rightarrow \gamma \gamma$ decay mode (hadronic channel) with two highest photons. ($p_T > M_{\gamma\gamma}/3$, $p_T > M_{\gamma\gamma}/4$)

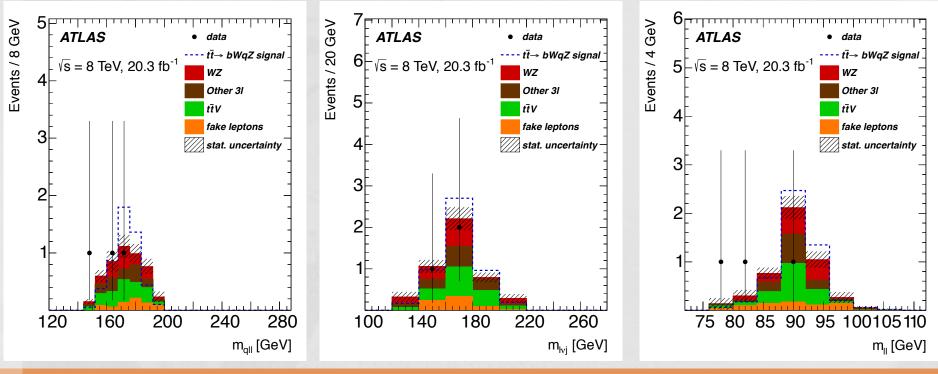


$t\bar{t}, t \rightarrow qH$ at CMS (8 TeV)

• 3 b jets + one lepton channel

CMS-PAS-TOP-13-007 (paper in preparation)

Combination
 Obs. (Exp.) B(t→cH) < 0.40% (0.43%)
 Obs. (Exp.) B(t→uH) < 0.55% (0.40%)


New!

$t \rightarrow qZ, Z \rightarrow ll \text{ at ATLAS (8 TeV)}$

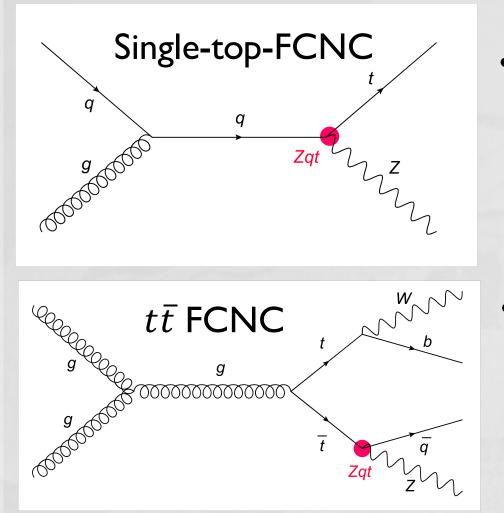
Eur. Phys. J. C (2016) 76:12

- Three isolated leptons, at least two jets, MET.
- Kinematic reconstruction using m_{top} and m_W .
- Correct assignment : $\epsilon_{tFCNC} = 79.9\% \epsilon_{tSM} = 56.3\%$

2016-09-26

$t \rightarrow qZ, Z \rightarrow ll \text{ at ATLAS (8 TeV)}$

Eur. Phys. J. C (2016) 76:12


- Main uncertainties on background are from its modeling.
- Uncertainties of the signal modelling are from the production cross section and ISR/FSR modelling , b-tagging.

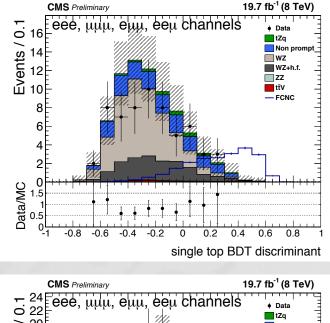
Sample	Yields
WZ	$1.3\pm0.2\pm0.6$
$t\bar{t}V$	$1.5\pm0.1\pm0.5$
tZ	$1.0\pm0.1\pm0.5$
Fake leptons	$0.7\pm0.3\pm0.4$
Other backgrounds	$0.2\pm0.1\pm0.1$
Total background	$4.7 \pm 0.4 \pm 1.0$
Data	3
Signal efficiency $[\times 10^{-4}]$	$7.8\pm0.1\pm0.8$

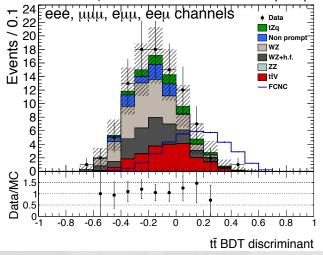
Observed
$$7 \times 10^{-4}$$
 (-1σ) 6×10^{-4} Expected 8×10^{-4} $(+1\sigma)$ 12×10^{-4}

$t \rightarrow qZ, Z \rightarrow ll$ at CMS (8 TeV)

CMS-PAS-TOP-12-039

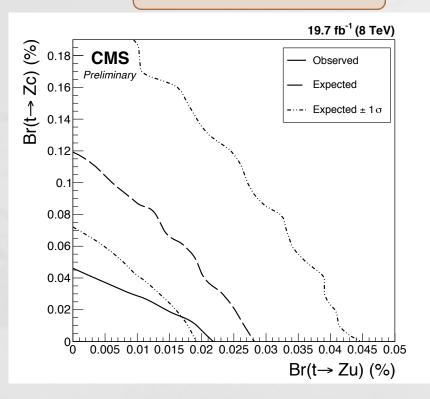
New!


New analysis searches for tZq-FCNC in singletop and $t\bar{t}$ production.


• Previous analysis PRL 112 (2014) 171802 in $t\bar{t}$ production : Br(t \rightarrow qZ) < 0.05%

$t \rightarrow qZ, Z \rightarrow ll \text{ at CMS (8 TeV)}$

CMS-PAS-TOP-12-039


- Four decay modes : eee, $\mu\mu\mu$, $e\mu\mu$, $ee\mu$.
- Single-top-FCNC : exclusively one b-tagged jet .
 - $t\bar{t}$ FCNC : at least two jets with one b-tagged jet. Single-top-FCNC, $t\bar{t}$ FCNC and background-enriched samples are combined in a single fit.

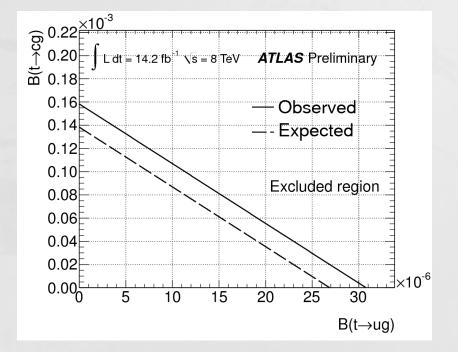
$t \rightarrow qZ, Z \rightarrow ll \text{ at CMS (8 TeV)}$

Limits at 95% C.L. for _____ different combinations of tZu and tZc couplings.

More stringent limit is observed on the tZu couplings for its larger cross section.

CMS-PAS-TOP-12-039

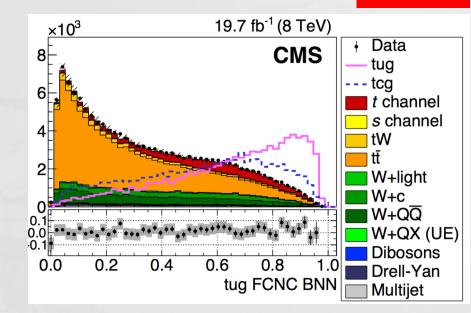
Branching ratio	Expected	1σ range	2σ range	Observed
$\mathcal{BR}(t \rightarrow Zu) \ (\%)$	0.027	0.018-0.042	0.014-0.065	0.022
$\mathcal{BR}(t \rightarrow Zc) (\%)$	0.118	0.071-0.222	0.049-0.484	0.049

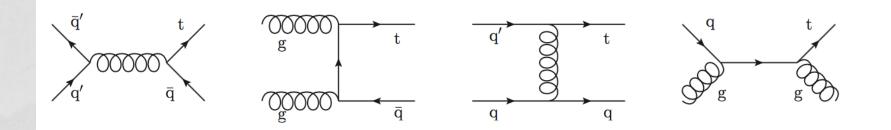

FCNC tcg and tug in single top

14.2 fb⁻¹ at 8 TeV

ATLAS-CONF-2013-063

• $Br(t \to u + g) < 3.1 \times 10^{-5} (1.58 \times 10^{-4})$ • $Br(t \to c + g) < 1.6 \times 10^{-4} (1.05 \times 10^{-3})$

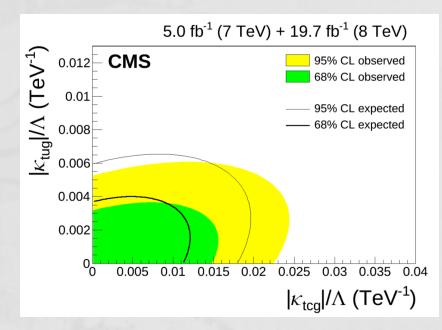

Tae Jeong Kim (HYU)


FCNC tcg and tug in single top

7 TeV and 8 TeV

CMS-PAS-TOP-14-007 (submitted)

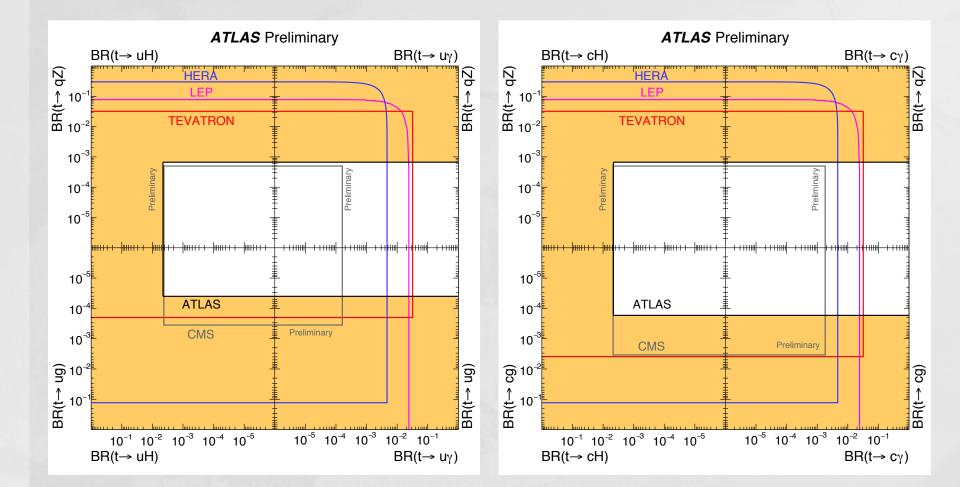
- Search for FCNC *tcg* and *tug* coupling in the t-channel single top production.
- one isolated μ , 2-3 jets, at least one b-tagged jet
- Using Bayesian Neural Network (BNN)
- W + jets is one of the main uncertainty source.



New!

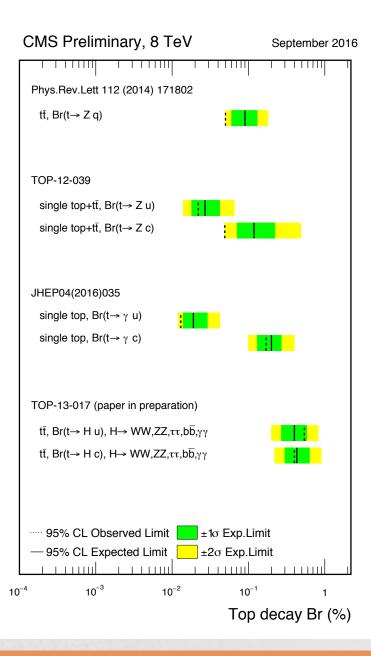
FCNC tcg and tug in single top

7 TeV and 8 TeV CMS-PAS-TOP-14-007 (submitted)


• Effective Lagrangian $\frac{\kappa_{tqg}}{\Lambda} g_s \overline{f} \sigma^{\mu\nu} \lambda^a t G^a_{\mu\nu}$

• $Br(t \to u + g) < 2.0 (2.8) \times 10^{-4} \leftarrow \text{observed (expected)}$ • $Br(t \to c + g) < 4.1 (2.8) \times 10^{-4}$ New!

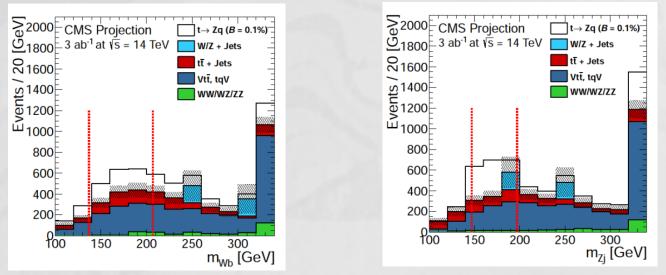
FCNC ATLAS summary



Tae Jeong Kim (HYU)

CMS summary

All FCNC results except the result of tc(u)g coupling in TOP-14-007 \rightarrow

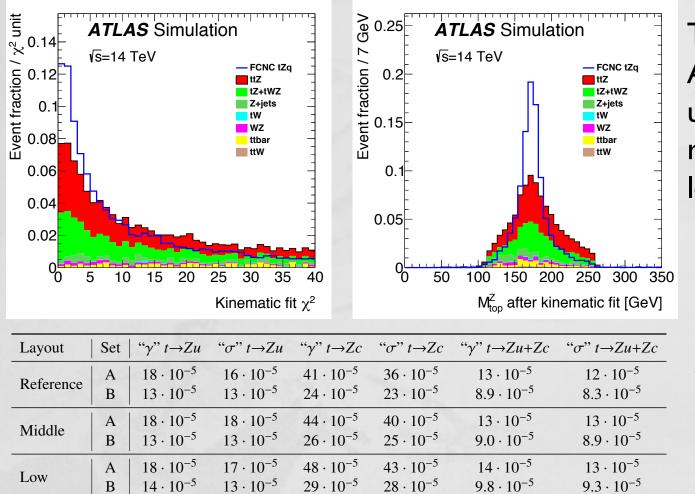


Projections of $t \rightarrow cZ$ at 14 TeV

3000fb⁻¹ at 14 TeV

CMS-PAS-FTR-13-016

- Search for tqZ coupling in $t\overline{t}$ pair production with upgraded detector at 14 TeV scenario with high pileup conditions.
- 10 times better limit expected at 3000 fb⁻¹


$\begin{tabular}{l} $\mathcal{B}(t \to Zq)$ \end{tabular}$	$19.5{\rm fb}^{-1}$ @ 8 TeV	$300{\rm fb}^{-1}$ @ 14 TeV	$3000 \text{fb}^{-1} @ 14 \text{TeV}$
Exp. bkg. yield	3.2	26.8	268
Expected limit	< 0.10%	< 0.027%	< 0.010%
1σ range	0.06 - 0.13%	0.018 - 0.038%	0.007 - 0.014%
2σ range	0.05 - 0.20%	0.013 - 0.051%	0.005 - 0.020%

Projections of $t \rightarrow cZ$ at 14 TeV

3000fb⁻¹ at 14 TeV

ATL-PHYS-PUB-2016-019

Three different ATLAS detector upgrade scenario: reference, middle, low.

A : run I data driven fake rate B : HL-LHC driven fake rate

Projections of $t \rightarrow cH$ at 14 TeV

3000fb⁻¹ at 14 TeV

GeV ATLAS Simulation ATLAS Simulation 0. Event fraction / 6 √s=14 TeV reference scenario √s=14 TeV reference scenario - FCNC tHa - FCNC tHq 0.08 ttbar ttbar ST t-chan ST Wt-chan ST t-chan ST s-chan ST Wt-chan ttH 0.06 WH ST s-chan ttH WH 0.04 0.02 60 80 100 120 140 160 180 200 1 2 3 0 5

Three different ATLAS detector upgrade scenario: reference, middle, low.

Layout	Set	$ t \rightarrow Hu$	$t \rightarrow Hc$	$t \rightarrow Hu + Hc$
Reference	A B	$ \begin{vmatrix} 2.4 \cdot 10^{-4} \\ 2.4 \cdot 10^{-4} \end{vmatrix} $	$2.0 \cdot 10^{-4} \\ 2.0 \cdot 10^{-4}$	$\frac{1.1 \cdot 10^{-4}}{1.1 \cdot 10^{-4}}$
Middle	A B	$ \begin{vmatrix} 2.9 \cdot 10^{-4} \\ 2.9 \cdot 10^{-4} \end{vmatrix} $	$2.4 \cdot 10^{-4} \\ 2.4 \cdot 10^{-4}$	$\frac{1.3 \cdot 10^{-4}}{1.3 \cdot 10^{-4}}$
Low	A B	$\begin{vmatrix} 3.5 \cdot 10^{-4} \\ 3.5 \cdot 10^{-4} \end{vmatrix}$	$3.0 \cdot 10^{-4}$ $3.0 \cdot 10^{-4}$	$\frac{1.7 \cdot 10^{-4}}{1.7 \cdot 10^{-4}}$

Number of tagged b-jets

A : run I data driven fake rate B : HL-LHC driven fake rate

Mass of 2 b-jets [GeV]

ATL-PHYS-PUB-2016-019

Similarly 10 times better limit expected at 3000 fb⁻¹

Event fraction

0.6

0.4

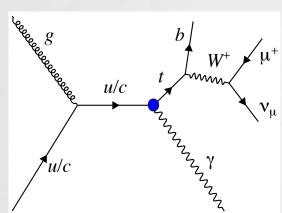
0.3

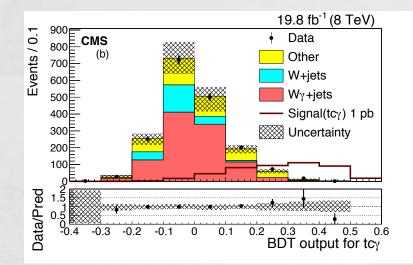
0.2

0.1

Conclusions

- LHC was indeed top quark factory. ATLAS and CMS have performed the rare top decay searches. Rare processes in top quark sector are now reachable.
- Exciting time is ahead of us for rare process searches with more data in 2016.
- The results at 13 TeV will be coming soon.


FCNC $tq\gamma$ in single top production


19.1 fb⁻¹ at 8 TeV

- Search for anomalous $tq\gamma$ coupling in the single top production \rightarrow The first at the LHC and the most stringent bounds on the FCNC $tq\gamma$ to date.
- o only one isolated μ with 20 GeV, only one b-tagged jet, one isolated γ with 50 GeV
- Photon energy scale and $W\gamma + jets, W + jets$ (estimated in data driven way) are one of main uncertainties.
- Boosted decision tree (BDT)

• $Br(t \rightarrow u\gamma) < 0.013\%$ • $Br(t \rightarrow c\gamma) < 0.17\%$

