

Established by the European Commission

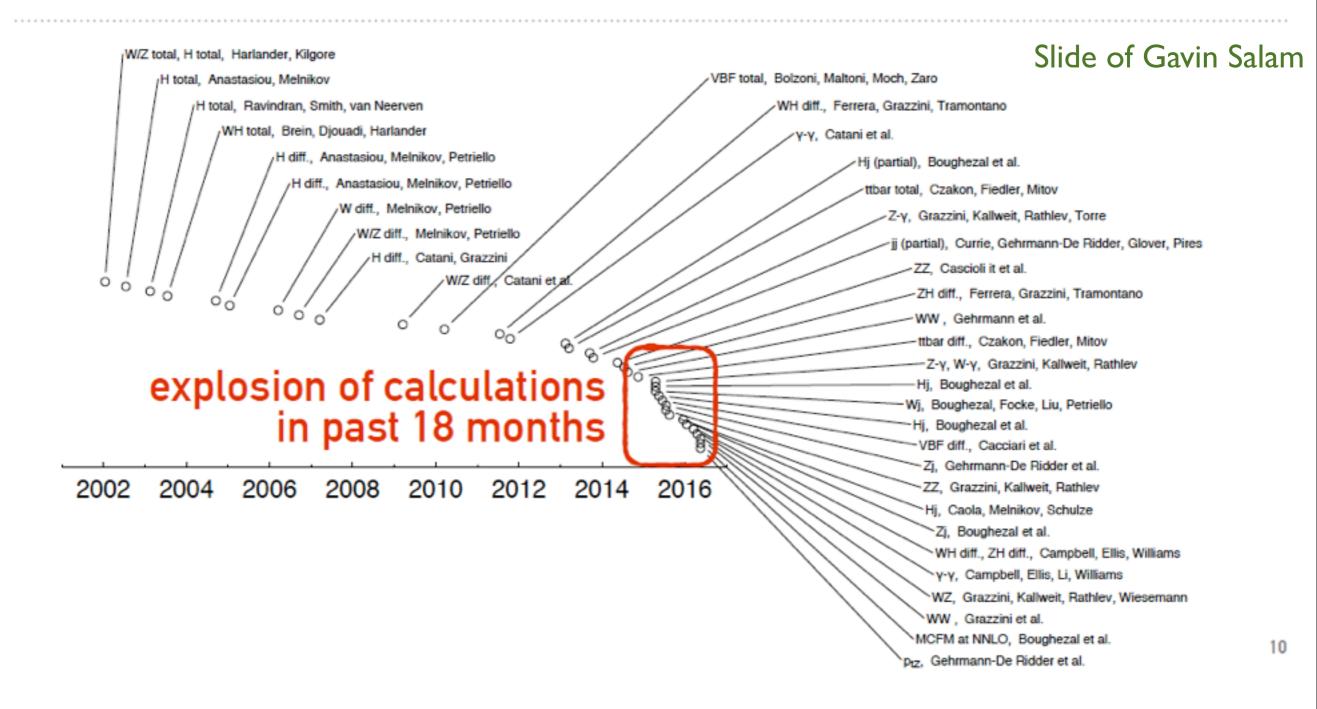
AUTOMATION OF ELECTROWEAK CORRECTIONS

HUA-SHENG SHAO

THEORETICAL PHYSICS DEPARTMENT CERN

28 SEPTEMBER 2016

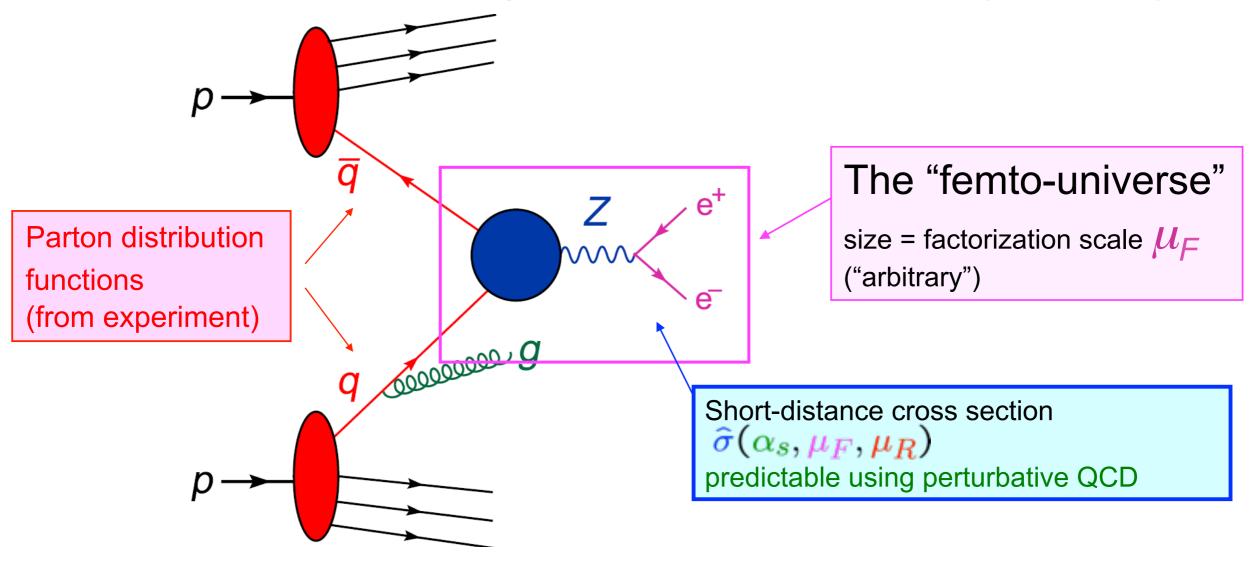
FRONTIER OF PRECISION THEORY @ LHC


- LHC runs at 13 TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level
 - Frontier of precision theory for ElectroWeak scale observables
 - Goal: to achieve the precent level predictions
 - Request: NNLO QCD and NLO EW $~\alpha_s^2 \simeq \alpha \simeq 1\%$
 - Automation: NNLO QCD (long way) and NLO EW (this talk)

FRONTIER OF PRECISION THEORY @ LHC

NNLO hadron-collider calculations v. time

as of mid June


FRONTIER OF PRECISION THEORY @ LHC

- LHC runs at 13 TeV and future colliders at 100 TeV
 - energy reaches deeper into multi-TeV region & high integrated luminosity
 - many processes (even rare processes before) reach precision era (precent)
- NLO QCD becomes standard: automation (e.g. MG5_aMC)
 - scale uncertainty reaches to 10% level
- Frontier of precision theory for ElectroWeak scale observables
 - Goal: to achieve the precent level predictions
 - Request: NNLO QCD and NLO EW $\, lpha_s^2 \simeq lpha \simeq 1\% \,$
 - Automation: NNLO QCD (long way) and NLO EW (this talk)
- Necessity of EW corrections:
 - First opportunity to explore TeV scale kinematics, where EWC ~ 10%
 - High precision measurements are present or in planned
 - cross section ratios, e.g. different center-of-mass energy, different processes
 - fundamental parameters, e.g. W mass
 - (differential) cross sections for candle processes, e.g. top quark pair xs, Z pt

$$\sigma(pp \to Z + X) = \int dx_1 dx_2 f(x_1, \mu_F) f(x_2, \mu_F) \hat{\sigma}(\alpha_s, \mu_F, \mu_R)$$

$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n$$

$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \sigma^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]$$

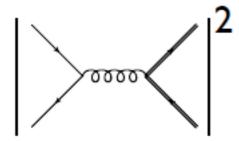
$$\hat{\sigma}(\alpha_s, \alpha, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \alpha^m$$

$$\hat{\sigma}(\alpha_s, \alpha, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^n \alpha^m \left[\hat{\sigma}^{(0,0)} + \frac{\alpha_s}{2\pi} \sigma^{(1,0)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2,0)}(\mu_F, \mu_R) + \cdots \right]$$

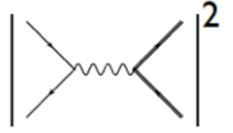
$$+\frac{\alpha}{2\pi}\sigma^{(0,1)}(\mu_F,\mu_R) + \left(\frac{\alpha}{2\pi}\right)^2\hat{\sigma}^{(0,2)}(\mu_F,\mu_R) + \cdots$$

$$+\sum_{i\geq 1}\sum_{j\geq 1} \left(\frac{\alpha_s}{2\pi}\right)^i \left(\frac{\alpha}{2\pi}\right)^j \hat{\sigma}^{(i,j)}(\mu_F,\mu_R)$$

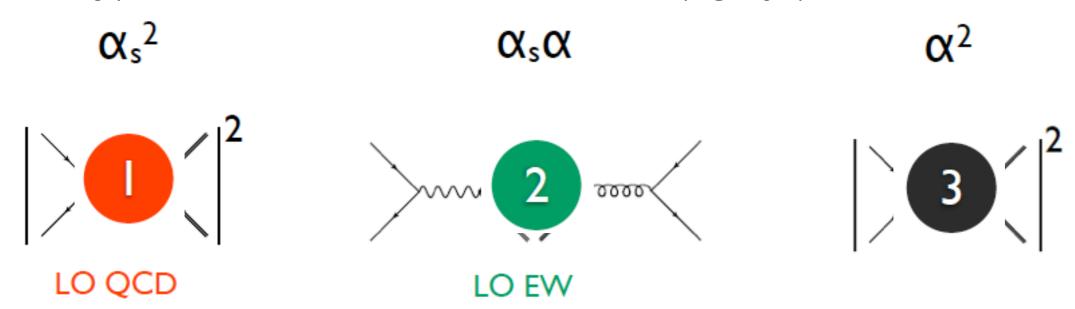
- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more lpha expansion wrt Born

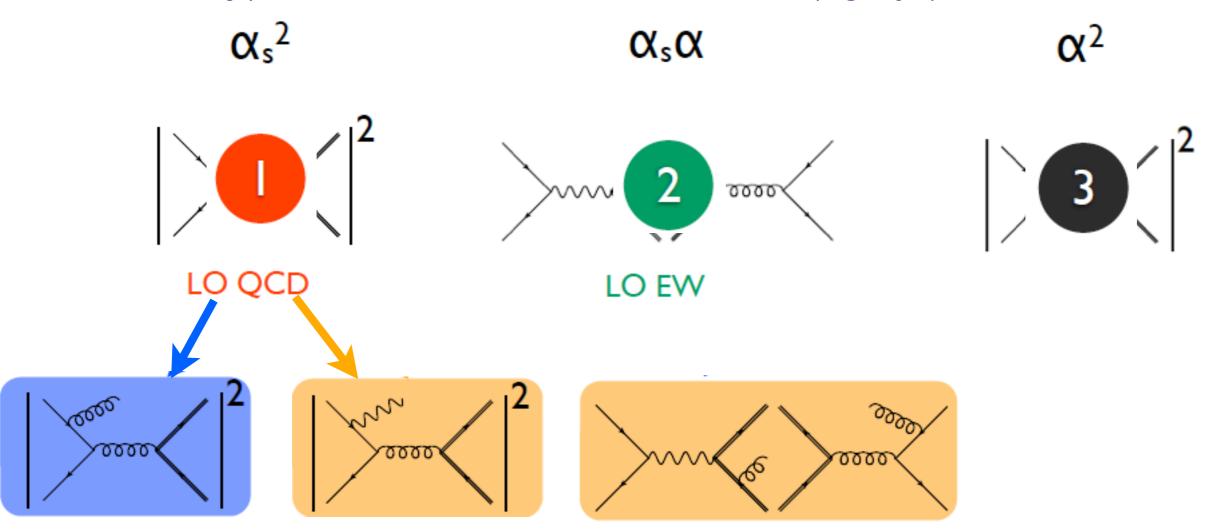

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more lpha expansion wrt Born
 - Situation may be more complicated



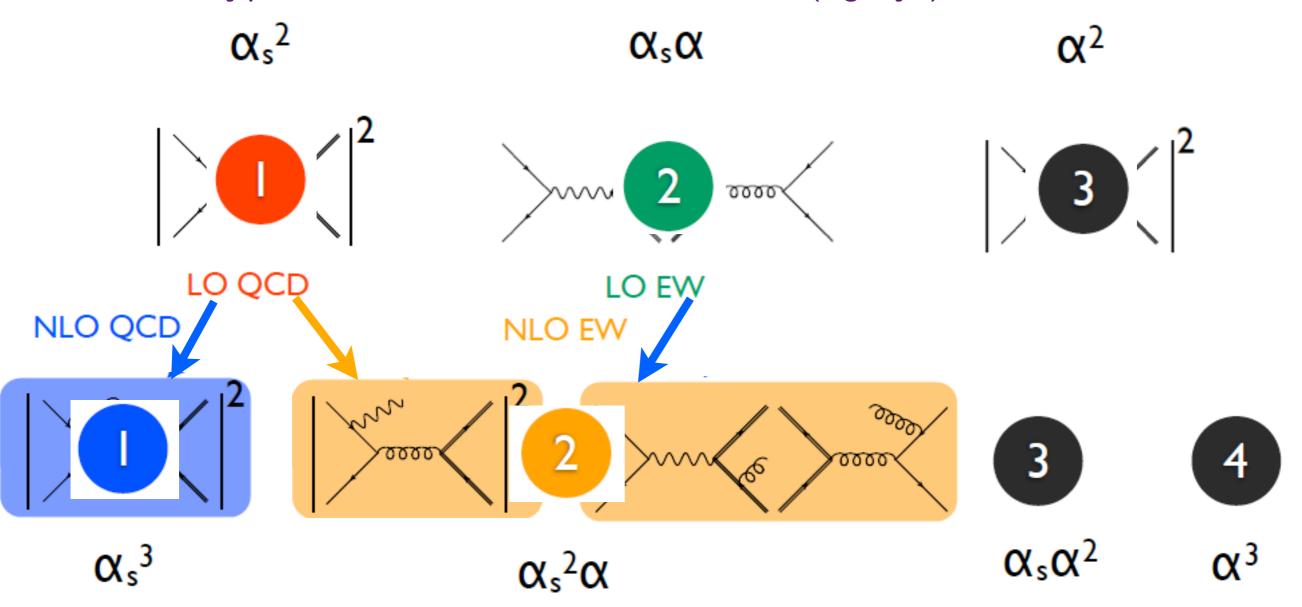

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more lpha expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more lpha expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)





- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more lpha expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)



- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)

- see L. Harland-Lang's talk for recent progress on photon PDF
 Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\,\Gamma/M \simeq \alpha\,$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them?)
 - The general matching between matrix element and parton shower will be difficult

- see L. Harland-Lang's talk for recent progress on photon PDF
 Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\,\Gamma/M \simeq \alpha\,$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them?)
 - The general matching between matrix element and parton shower will be difficult
- Three α schemes are frequently used
 - $\alpha(0)$ scheme: appropriate for external photon
 - $ullet lpha(M_Z)$ scheme: works good for internal photon
 - $G_{\iota\iota}$ scheme: works good for weak bosons and well measured

- see L. Harland-Lang's talk for recent progress on photon PDF
 Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\,\Gamma/M \simeq \alpha\,$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them?)
 - The general matching between matrix element and parton shower will be difficult
- Three α schemes are frequently used
 - $\alpha(0)$ scheme: appropriate for external photon
 - $ullet lpha(M_Z)$ scheme: works good for internal photon
 - G_{μ} scheme: works good for weak bosons and well measured

Shall we use different scheme/renormalization for different vertices in one diagram?

- see L. Harland-Lang's talk for recent progress on photon PDF
 Let us start from defining NLO "EW Corrections" (= "EWC")
 - So far, it seems obvious that EWC is just one more α expansion wrt Born
 - Situation may be more complicated
 - There may present several order contributions in Born (e.g. dijet)
 - The usually ignored off-shell effect may be important $\Gamma/M \simeq \alpha$
 - Photon PDF will be quite relevant, which is usually poorly determined (? LUXqed)
 - Photon and jet is not well separated (need fragmentation function or some approximations)
 - If phase space is enough, EW boson radiation will be quite often (do we need them?)
 - The general matching between matrix element and parton shower will be difficult
- Three α schemes are frequently used
 - $\alpha(0)$ scheme: appropriate for external photon
 - • $\alpha(M_Z)$ scheme: works good for internal photon
 - G_{μ} scheme: works good for weak bosons and well measured

Shall we use different scheme/renormalization for different vertices in one diagram?

• Use $K_{\rm NLO~QCD} \times K_{\rm NLO~EW}$ to capture the missing higher order ?

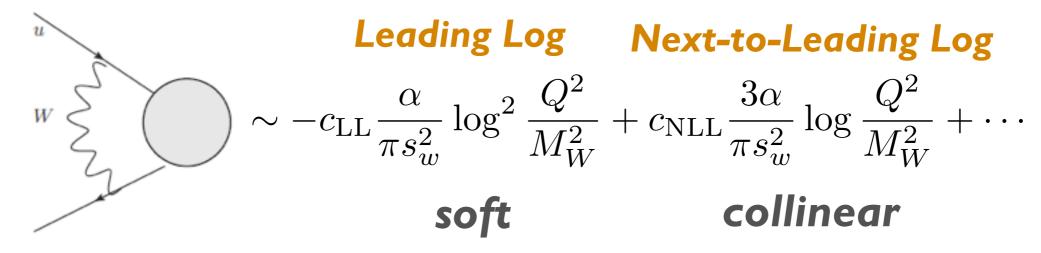
Enhance EWC by Yukawa coupling

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_z^2}$ ~ 3%

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 2%

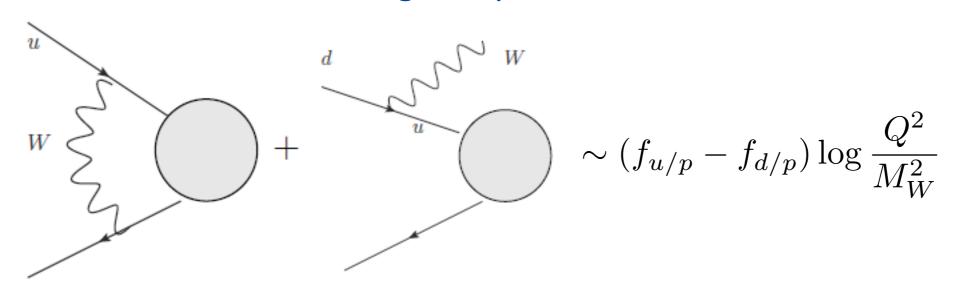


- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms

ENHANCE EW CORRECT

- Enhance EWC by Yukawa coupling
 - e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha \log \frac{M_Z^2}{m_e^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons

e.g.
$$Q=1~{
m TeV}$$
 $-c_{
m LL} imes 26\%+c_{
m NLL} imes 16\%$


- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha\log\frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha\log\frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst.

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- **Enhance EWC** by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha\log\frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst.
 - Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet

- Enhance EWC by Yukawa coupling e.g. H+2jets at LHC, EWC ~ $\frac{\alpha}{\pi s_w^2} \frac{M_t^2}{M_W^2}$ ~ 5%
- Enhance EWC by electromagnetic logarithms
 - Initial-state radiation at electron-positron collision, EWC ~ $\alpha\log\frac{M_Z^2}{m_e^2}$ ~ 3% Final-state radiation for exclusive muon, EWC ~ $\alpha\log\frac{M_Z^2}{m^2}$ ~ 2%
- Enhance EWC by EW Sudakov logarithms
 - EW Sudakov logarithms come from exchange of virtual weak bosons
 - Unlike logarithms generated by gluon/photon, such a logarithm cannot cancel
 - One does not treat W/Z inclusively as they can be (at least partially) reconst.
 - Even treat W/Z as inclusive as gluon/photon: initial state is not SU(2) singlet
 - However, EW Sudakov logarithms is not always relevant in Sudakov regime
 - e.g. Drell-Yan at large invariant mass receives large contributions from small t Dittmaier et al. '10

Automation tools for EWC so far (not as much as for QCD corr.)

- Automation tools for EWC so far (not as much as for QCD corr.)
- MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
- Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
- Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
- GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano

Apologize for not being able to mention many many important fundamental works as the basis of the above tools

- Automation tools for EWC so far (not as much as for QCD corr.)
- MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
- Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
- Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
- GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)

- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
 - Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
 - Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
 - GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)

More contributions like Feynman diagrams, off-shell currents

Processes	QCD	QED	QCD+QED
u u~ > u u~	28	36	64
g g > t t~	45	82	127
g g > t t~ h	164	533	697
a a > t t~ h	48	2102	2150
u u~ > w+ w- z	59	3111	3170
e+ e- > w+ w- e+ e-	_	27035	-
u u~ > w+ w- w+ w-	496	57879	58375

PREC

SHENG SHAO

- Automation tools for EWC so far (not as much as for QCD corr.)
- MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
- Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
- Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
- GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
- More contributions like Feynman diagrams, off-shell currents
- Usually involve many different mass scales (a problem of numerical stability)

- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
 - Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
 - Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
 - GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
 - More contributions like Feynman diagrams, off-shell currents
 - Usually involve many different mass scales (a problem of numerical stability)
 - More complicated CT vertices, e.g. top mass renormalization

- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
 - Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
 - Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
 - GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
 - More contributions like Feynman diagrams, off-shell currents
 - Usually involve many different mass scales (a problem of numerical stability)
 - More complicated CT vertices, e.g. top mass renormalization

```
tMass_UV_EW = CTParameter(name = 'tMass_UV_EW',
                                                                                                                                                                                                                                                   type = 'complex',
                                                                                                                                                                                                                                                   value = {-1:'recms(CMSParam==1.0 and WT != 0,(ee**2*MT*(MW**2*(3 + 24*sw**2 - 32*sw**4) + cw**2*(9*MT**2 + 2*MW**2*(3 - 16*sw**2*)
                                                                                ))))/(384.*cw**2*MW**2*cmath.pi**2*sw**2))'+'+'+'dMB_tMass_UV_EW.value[-1],
                                                                                                                                                                                                                                                   0:'recms(CMSParam==1.0 and WT != 0,-(ee**2*(9*cw**2*MH**2 - 72*cw**2*MT**4 - 18*MT**2*MW**2 - 9*cw**2*MT**2 + 18*cw\
                                                                                **2*MW**4 + 9*cw**2*MT**2*MZ**2 + 9*MW**2*Sw**2 + 128*cw**2*MW**2*Sw**2 - 24*MW**2*Sw**2 + 128*MT**2*MW**2*Sw**4 + 32*M\
                                                                                w**2*MZ**2*sw**4 - 9*cw**2*MT**4*reglog(1/(4.*cmath.pi)) + 9*MT**2*MW**2*reglog(1/(4.*cmath.pi)) - 24*MT**2*MW**2*reglog(1/(4.*cmath.pi))
                                                                                1/(4.*cmath.pi)) + 16*MT**2*MW**2*sw**4*reglog(1/(4.*cmath.pi)) - 18*cw**2*MT**4*reglog(cmath.pi) + 96*MT**2*Sw**2*reglog(cmath.pi) - 112*cw**2*MT***
                                                                                2*MW**2*sw**2*reglog(cmath.pi) - 128*MT**2*MW**2*sw**4*reglog(cmath.pi) - 192*MT**2*MW**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*MW**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*mW**2*sw**2*mW**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*mW**2*sw**2*mW**2*sw**2*reglog(2*Cmath.pi) + 224*cw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*mW**2*sw**2*sw**2*mW**2*sw**2*sw**2*mW**2*sw**2*sw**2*mW**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*sw**2*s
                                                                                cmath.pi) + 256*MT**2*MW**2*sw**4*reglog(2*cmath.pi) + 27*cw**2*MT**4*reglog(4*cmath.pi) + 9*MT**2*MW**2*reglog(4*cmath.pi) + 72*MT**2*MW**2*sw**2*reglog(\)
                                                                                4*cmath.pi) - 112*cw**2*MT**2*Sw**2*reglog(4*cmath.pi) - 112*MT**2*Sw**2*reglog(4*cmath.pi)))/(1152.*cw**2*MT*MW**2*cmath.pi) + (ee**\
                                                                                2*MH**2*MT*reglog(MU_R**2/MH**2))/(128.*MW**2*sw**2) - (ee**2*MT*(18*cw**2*MT**2 + 9*MW**2 + 9
                                                                                sw**4)*reglog(MU_R**2/MT**2))/(128.*MW**2*cmath.pi**2*sw**2) + (ee**2*MT*(MT**2 + 2*MW**2)*reglog(MU_R**2/MW**2))/(128.*MW**2*cmath.pi**2*sw**2) + \ (ee**2*MT*(MT**2 + 2*MW**2)*reglog(MU_R**2/MW**2))/(128.*MW**2*cmath.pi**2*sw**2) + \ (ee**2*MT*(MT**2 + 2*MW**2)*reglog(MU_R**2/MW**2))/(128.*MW**2*cmath.pi**2*sw**2) + \ (ee**2*MT*(MT**2 + 2*MW**2))/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128.*MW**2)/(128
                                                                                (ee**2*MZ**2*(9*cw**2*MT**2 + 9*MW**2 + 32*MW**2*sw**2) - (ee**2*(-9*cw**2))/(1152.*cw**2*MT*MW**2*sw**2) - (ee**2*(-9*cw***))/(1152.*cw**2*MT*MW**2*sw**2) - (ee**2*(-9*cw***))/(1152.*cw**2*sw**2) - (ee**2*(-9*cw***))/(1152.*cw*
                                                                                2*MH**2*MT**2 + 36*cw**2*MT**4 + 18*MT**2*MW**2 - 9*cw**2*MT**2*MZ**2 - 9*MW**2*MZ**2 + 48*MT**2*MW**2*Sw**2 + 24*MW**2*Sw**2 - 64*MT**2*MW**2*Sw**4
                                                                                      -32*MW**2*MZ**2*sw**4)*reglog((MT**2 + vep*complex(0,-1))/MU_R**2))/(1152.*cw**2*MT*MW**2*cmath.pi**2*sw**2) \\ - (ee**2*(MT - MW)**2*(MT + MW)**2*
                                                                                    2*MW**2)*reglogm((-MT**2 + MW**2 + vep*complex(0,-1))/MW**2))/(128.*MT**3*MW**2*cmath.pi**2*sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MX**2 + 9*MWX**2))/(128.*MT**3*MW**2*cmath.pi**2*sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MX**2 + 9*cw**2*MT**2*MX**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MX**2))/(128.*MT**3*MW**2*Cmath.pi**2*Sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MX**2))/(128.*MT**3*MW**2*Cmath.pi**2*Sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MX**2))/(128.*MT**3*MW**2*Cmath.pi**2*Sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MX**2))/(128.*MT**3*MW**2*Cmath.pi**2*Sw**2) + (ee**2*(-18*MT**2*MW**2))/(128.*MT**3*MW**2*Cmath.pi**2*Sw**2) + (ee**2*(-18*MT**2*MW**2))/(128.*MT**3*MW**2))/(128.*MT**3*MW**2*Cmath.pi**2*Sw**2) + (ee**2*(-18*MT**2*MW**2))/(128.*MT**3*MW**2))/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT**3*MW**2)/(128.*MT
                                                                                **2*MZ**2 - 48*MT**2*MW**2*Sw**2 - 24*MW**2*Sw**2 + 64*MT**2*MW**2*Sw**4 + 32*MW**2*Sw**4)*reglog((-MZ**2 - cmath.sqrt(MZ**4 - 4*MT**2*MW**2*Sw**4) * reglog((-MZ**2 - cmath.sqrt(MZ**4 - 4*MT**2*MW**2*MZ**2*Sw**4) * reglog((-MZ**2 - cmath.sqrt(MZ**2 - cmath.s
                                                                                + \text{vep*complex}(0,-1)))/(2.*MT**2)))/(1152.*cw**2*MT*MW**2*cmath.pi**2*sw**2) + (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MZ**2 + 9*MW**2*MZ**2 - 48*MT**2*MW**2 + 9*cw**2*MT**2*MZ**2 + 9*MW**2*MZ**2 + 9*MW**2 
                                                                                **2*SW**2 - 24*MW**2*MZ**2*SW**2 + 64*MT**2*MW**2*SW**4 + 32*MW**2*SW**4 + **2*SW**4 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1))))/\
                                                                                (2.*MT**2)))/(1152.*cw**2*MT*MW**2*cmath.pi**2*sw**2) - (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MZ**2 + 9*MW**2*MZ**2 - 48*MT**2*MW**2*Sw**2 - 24*MW**2*MZ**2 - 48*MT**2*MW**2*Sw**2 - 24*MW**2*MZ**2 + 9*Cw**2*MZ**2 + 9*MW**2*MZ**2 + 9*MW**2 
                                                                                **2*SW**2 + 64*MT**2*MW**2*SW**4 + 32*MW**2*SW**4)*(2*MT**2 - MZ**2 + Cmath.sqrt(-4*MT**2*MZ**2 + MZ**4 + MT**2*vep*complex(0,4)))*reglog((-MZ**2 + \
                                                                                cmath.sqrt(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1))))/(2*MT**2 - MZ**2 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1)))))/(2*MT**3*(MZ**4 - 4*MT**2*(MZ**2 + vep*complex(0,-1))))/(2*MT**3*(MZ**4 - 4*MT**2*(MZ**4 - 4*MT**2*(MZ**4 + vep*complex(0,-1))))/(2*MT**3*(MZ**4 - 4*MT**3*(MZ**4 - 4*MT**3*(MZ**4 + vep*complex(0,-1))))/(2*MT**3*(MZ**4 + vep*complex(0,-1)))/(2*MT**3*(MZ**4 + vep*complex(0,-1))/(2*MT**3*(MZ**4 + vep*complex(0,-1))/(2*MT**3
                                                                                 **W**2*cmath.pi**2*sw**2 - (ee**2*(-18*MT**2*MW**2 + 9*cw**2*MT**2*MW**2*MZ**2 - 48*MT**2*MW**2*Sw**2 - 24*MW**2*Sw**2 + 64*MT**2*MW**2*Sw**2 + 64*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MT**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2**WW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*MW**2*
                                                                                **4 + 32*MW**2*MZ**2*sw**4)*(2*MT**2 - MZ**2 - cmath.sqrt(-4*MT**2*MZ**2 + MT**2*vep*complex(0,4)))*reglog((MZ**2 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**4 + MT**2*vep*complex(0,4)))*reglog((MZ**2 + cmath.sqrt(MZ**4 + MZ**4 + MZ*
                                                                                **2 + vep*complex(0,-1))))/(-2*MT**2 + MZ**2 + cmath.sqrt(MZ**4 - 4*MT**2*(MZ**4 + vep*complex(0,-1))))))/(2304.*cw**2*MT**3*MW**2*cmath.pi**2*sw**2) - (e\
                                                                                e^{**2*MT*(-MH + 2*MT)*(MH + 2*MT)*reglog(-1 + (MH**2 - cmath.sqrt(MH**4 - 4*MT**2*(MH**2 + vep*complex(0,-1))))/(2.*MT**2))/(128.*MW**2*cmath.pi**2*sw**2)
                                                                                     - (ee**2*MT*(-MH + 2*MT)*reglog(-1 + (MH**2 + cmath.sqrt(MH**4 - 4*MT**2*(MH**4 + vep*complex(0,-1)))))/(2.*MT**2)))/(128.*MW**2*cmath.pi**2*s)
                                                                                   w**2) + (ee**2*(-MH + 2*MT)*(MH + 2*MT)*(MH**2 + cmath.sqrt(MH**4 - 4*MH**2*MT**2 + MT**2*vep*complex(0,4)))*reglog((MH**2 - 2*MT**2 + cmath.sqrt(MH**4 - \

                                                                                        *MH**2*MT**2 + MT**2*vep*complex(0,4)))/(MH**2 + cmath.sqrt(MH**4 - 4*MH**2*MT**2 + MT**2*vep*complex(0,4)))))/(256.*MT*MW**2*cmath.pi**2*sw**2) + (ee**2
                                                                                             -MH + 2*MT)*(MH + 2*MT)*(MH**2 - cmath.sqrt(MH**4 - 4*MH**2*MT**2 + MT**2*vep*complex(0,4)))*reglog((-MH**2 + 2*MT**2 + cmath.sqrt(MH**4 - 4*MH**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT**2*MT*
                                                                                      + MT**2*vep*complex(0,4)))/(-MH**2 + cmath.sqrt(MH**4 - 4*MH**2*MT**2 + MT**2*vep*complex(0,4)))))/(256.*MT*MW**2*cmath.pi**2*sw**2))'+'+'+dMB_tMass_UV_E\HENG SHAO
PRECIS
```


- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
 - Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
 - Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
 - GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
 - More contributions like Feynman diagrams, off-shell currents
- Usually involve many different mass scales (a problem of numerical stability)
- More complicated CT vertices, e.g. top mass renormalization
- Need to proper treat gamma5 issue for the chiral currents

- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
 - Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
 - Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
 - GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
 - More contributions like Feynman diagrams, off-shell currents
 - Usually involve many different mass scales (a problem of numerical stability)
 - More complicated CT vertices, e.g. top mass renormalization
 - Need to proper treat gamma5 issue for the chiral currents
 - Need to well implement complex mass scheme to treat unstable particles

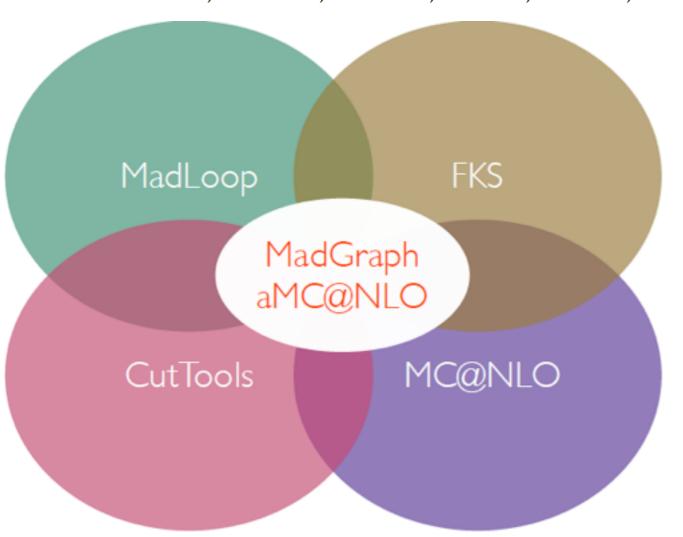
- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
 - Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
 - Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
 - GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
 - More contributions like Feynman diagrams, off-shell currents
 - Usually involve many different mass scales (a problem of numerical stability)
 - More complicated CT vertices, e.g. top mass renormalization
 - Need to proper treat gamma5 issue for the chiral currents
 - Need to well implement complex mass scheme to treat unstable particles
 - Need to deal with expansion into QCD and EW couplings

- Automation tools for EWC so far (not as much as for QCD corr.)
 - MadGraph5_aMC@NLO Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Pagani, HSS, Steler, Torrielli, Zaro
 - Openloops+Sherpa/Munich Cascioli, Lindert, Maierhofer, Pozzorini, Hoche, Kallweit + Sherpa other authors
 - Recola Actis, Denner, Hofer, Lang, Scharf, Uccirati
 - GoSam Cullen, Greiner, Heinrich, Luisoni, Mastrolia, Ossola, Reiter, Tramontano
- Complications in EWC wrt QCD corrections (fixed order only)
 - More contributions like Feynman diagrams, off-shell currents
 - Usually involve many different mass scales (a problem of numerical stability)
 - More complicated CT vertices, e.g. top mass renormalization
 - Need to proper treat gamma5 issue for the chiral currents
 - Need to well implement complex mass scheme to treat unstable particles
 - Need to deal with expansion into QCD and EW couplings
 - It is necessary to properly treat the photon

RECENT LHC PROCESSES WITH AUTOMATION TOOLS CERN

tool	collaboration	process	
MadGraph5_aMC@NLO	Frixione, Hirschi, Pagani, HSS, Zaro	$t\bar{t} + H/Z/W$	
OpenLoops	Kallweit, Lindert, Poaaorini, Schonherr, Maierhofer	W + n - jets, n = 2, 3	
Recola	Actis, Denner, Hofer, Lang, Scharf, Uccirati	$\ell^+\ell^- + jj, 4 \ leptons$	
GoSam	Chiesa, Greiner, Tramontano	W+jj	

RECENT LHC PROCESSES WITH AUTOMATION TOOLS CERN



tool	collaboration	process		
MadGraph5_aMC@NLO	Frixione, Hirschi, Pagani, HSS, Zaro	$t\bar{t} + H/Z/W$		
OpenLoops	Kallweit, Lindert, Poaaorini, Schonherr, Maierhofer	W + n - jets, n = 2, 3		
Recola	Actis, Denner, Hofer, Lang, Scharf, Uccirati	$\ell^+\ell^- + jj, 4 \ leptons$		
GoSam	Chiesa, Greiner, Tramontano	W+jj		

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro'l 4

4 commands for a NLO calculation

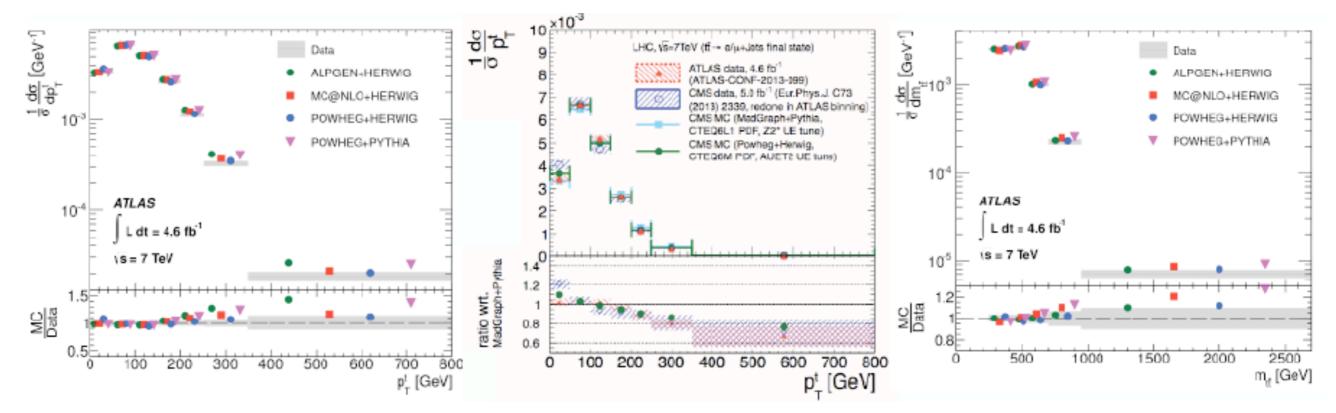
- > ./bin/mg5_aMC
- > generate process [QCD]
- > output
- > launch

MADGRAPH5_AMC@NLO IN A NUTSHELL

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, HSS, Stelzer, Torrielli, Zaro'l 4

4 commands for a NLO calculation

- > ./bin/mg5_aMC
- > generate process [QCD]
- > output
- > launch


complete automation for QCD+EW

- > ./bin/mg5_aMC
- > generate process [QCD EW]
- > output
- > launch

see D. Heymes's talk for NNLO QCD+NLO EW

- Top quark pair
 - ATLAS and CMS see some "anomaly" on the top p_T distribution and inv. mass
 - Data are softer than NLO QCD Monte Carlos (up to 30-40%)
 - It is known now due to the NNLO QCD or the scale choice in NLO QCD

see D. Heymes's talk for NNLO QCD+NLO EW

Top quark pair

- ATLAS and CMS see some "anomaly" on the top p_T distribution and inv. mass
- Data are softer than NLO QCD Monte Carlos (up to 30-40%)
- It is known now due to the NNLO QCD or the scale choice in NLO QCD

EWC in the literature

NLO weak: Beenakker et al. '94; Kuhn, Scharf, Uwer '06,'13; Bernreuther, Fucker, Si '06

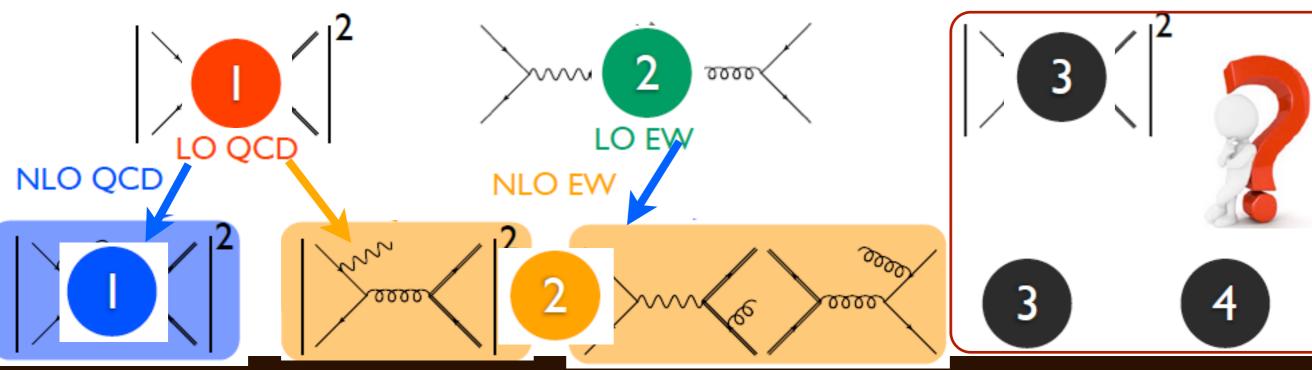
NLO QED: Hollik, Kollar '08

FB asymmetry: Hollik, Pagani 'II; Kuhn, Rodrigo 'I2; Manohar, Trott 'I2; Bernreuther, Si 'I2

NLO EW with decays: Bernreuther, Si '10

see D. Heymes's talk for NNLO QCD+NLO EW

- Top quark pair
 - ATLAS and CMS see some "anomaly" on the top p_T distribution and inv. mass
 - Data are softer than NLO QCD Monte Carlos (up to 30-40%)
 - It is known now due to the NNLO QCD or the scale choice in NLO QCD
- EWC in the literature


NLO weak: Beenakker et al. '94; Kuhn, Scharf, Uwer '06,'13; Bernreuther, Fucker, Si '06

NLO QED: Hollik, Kollar '08

FB asymmetry: Hollik, Pagani 'II; Kuhn, Rodrigo 'I2; Manohar, Trott 'I2; Bernreuther, Si 'I2

NLO EW with decays: Bernreuther, Si '10

- Why EWC again ?
 - One can start to worry about the importance of the "subleading" contr.

see D. Heymes's talk for NNLO QCD+NLO EW

Top quark pair

- ATLAS and CMS see some "anomaly" on the top p_T distribution and inv. mass
- Data are softer than NLO QCD Monte Carlos (up to 30-40%)
- It is known now due to the NNLO QCD or the scale choice in NLO QCD

EWC in the literature

NLO weak: Beenakker et al. '94; Kuhn, Scharf, Uwer '06,'13; Bernreuther, Fucker, Si '06

NLO QED: Hollik, Kollar '08

FB asymmetry: Hollik, Pagani 'II; Kuhn, Rodrigo 'I2; Manohar, Trott 'I2; Bernreuther, Si 'I2

NLO EW with decays: Bernreuther, Si '10

Why EWC again ?

- One can start to worry about the importance of the "subleading" contr.
- Most of the previous calculations base on the very old phton PDF MRST2004

see D. Heymes's talk for NNLO QCD+NLO EW

Top quark pair

- ATLAS and CMS see some "anomaly" on the top p_T distribution and inv. mass
- Data are softer than NLO QCD Monte Carlos (up to 30-40%)
- It is known now due to the NNLO QCD or the scale choice in NLO QCD

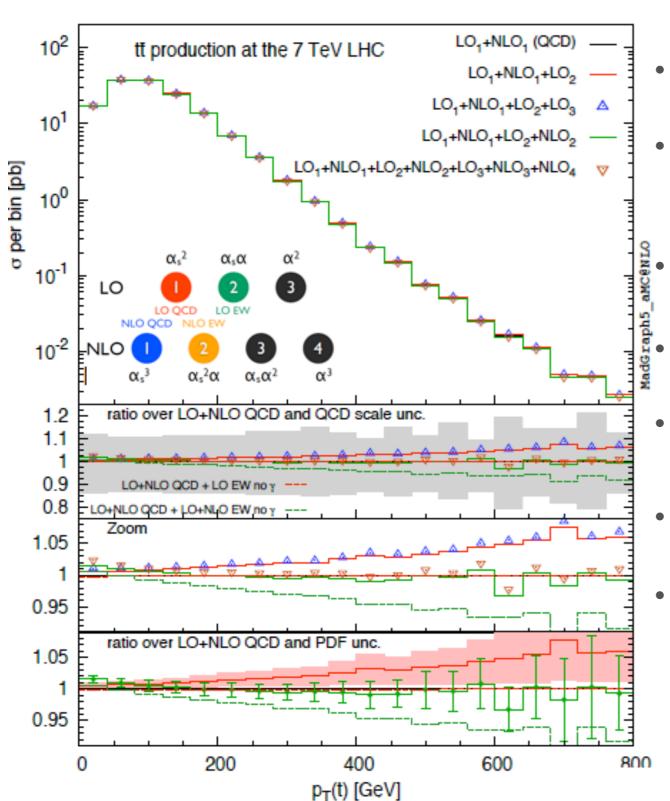
EWC in the literature

NLO weak: Beenakker et al. '94; Kuhn, Scharf, Uwer '06,'13; Bernreuther, Fucker, Si '06

NLO QED: Hollik, Kollar '08

FB asymmetry: Hollik, Pagani 'II; Kuhn, Rodrigo 'I2; Manohar, Trott 'I2; Bernreuther, Si 'I2

NLO EW with decays: Bernreuther, Si '10

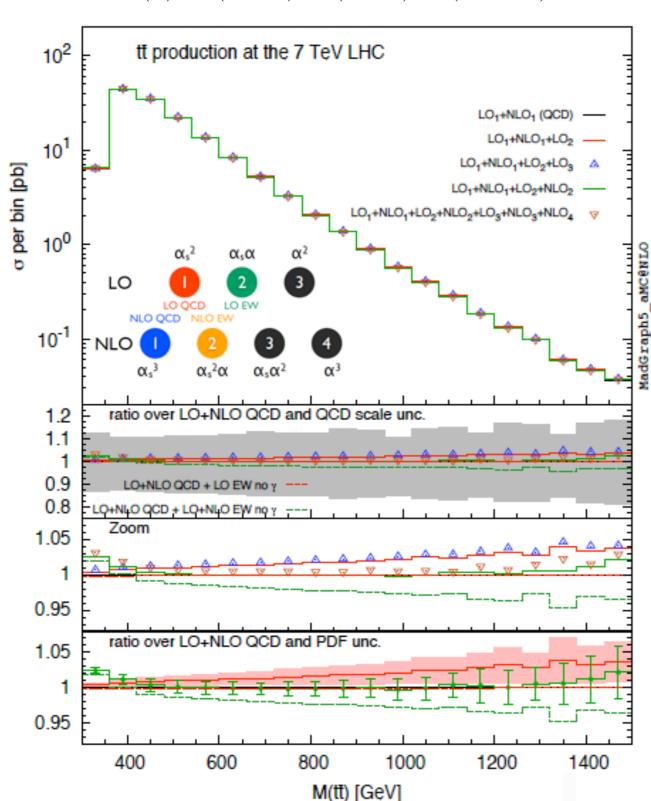

Why EWC again ?

- One can start to worry about the importance of the "subleading" contr.
- Most of the previous calculations base on the very old phton PDF MRST2004
- It is also a good process for one of our cross check in the code

$$\sigma_{\rm HBR}(t\bar{t}) = \sigma(t\bar{t} + H) + \sigma(t\bar{t} + Z) + \sigma(t\bar{t} + W^{\pm})$$

see D. Heymes's talk for NNLO QCD+NLO EW

- EWC accounts for -10% at large pt
 - LO₂ dominants by $g\gamma$ -initial states



- With NNPDF2.3QED, photon ~ EWC
- Very large photon PDF uncer.
- No results with recent new photon PDF NNPDF3.0QED, CT14QED, LUXqed, MMHTQED(?)
- HBR comes in from NLO₂ (NOT include)
- Subleading LO₃,NLO_{3,4} are small

$$\sigma_{\rm HBR}(t\bar{t}) = \sigma(t\bar{t} + H) + \sigma(t\bar{t} + Z) + \sigma(t\bar{t} + W^{\pm})$$

see D. Heymes's talk for NNLO QCD+NLO EW

- EWC accounts for -10% at large pt
 - LO₂ dominants by gy-initial states

- With NNPDF2.3QED, photon ~ EWC
- Very large photon PDF uncer.
- No results with recent new photon PDF NNPDF3.0QED, CT14QED, LUXqed, MMHTQED(?)
- HBR comes in from NLO₂ (NOT include)
- Subleading LO₃,NLO_{3,4} are small
- EWC accounts for -5% at large inv. mass

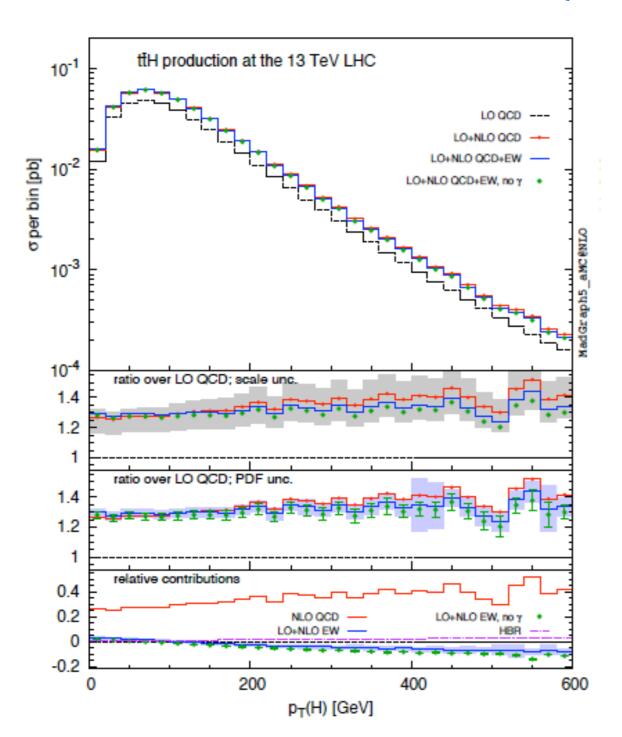
Frixione, Hirschi, HSS, Pagani, Zaro '14,'15

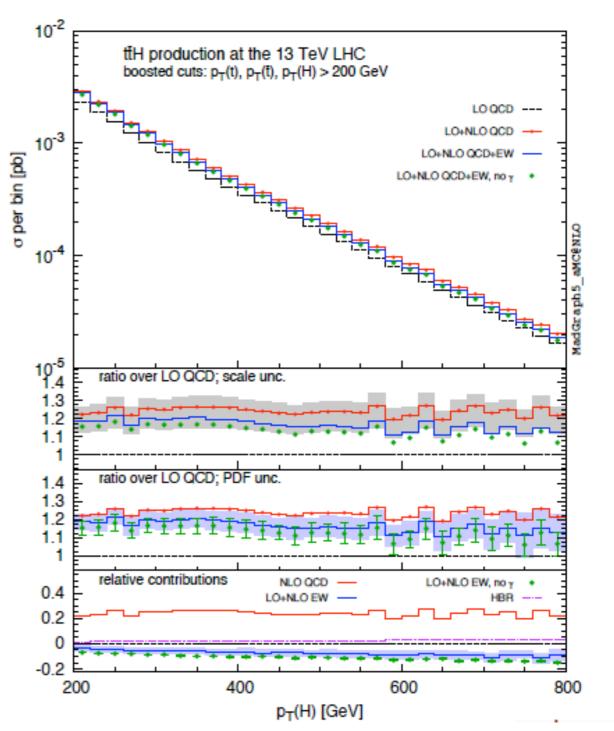
- Why top quark pair+(H,Z,W)?
 - These processes are very important at the LHC
 - ttbar+Higgs: the last missing of 4 main Higgs production channel (progress this year)
 - ttbar+Z/W: the background of ttbar+Higgs and important to study anomalous couplings
 - Missing of EWC for these processes in the literature
 - No conceptual problem in principle
 - First public EWC results with MadGraph5_aMC@NLO

Frixione, Hirschi, HSS, Pagani, Zaro '14,'15

- Why top quark pair+(H,Z,W)?
 - These processes are very important at the LHC
 - ttbar+Higgs: the last missing of 4 main Higgs production channel (progress this year)
 - ttbar+Z/W: the background of ttbar+Higgs and important to study anomalous couplings
 - Missing of EWC for these processes in the literature
 - No conceptual problem in principle
 - First public EWC results with MadGraph5_aMC@NLO
- EWC on the inclusive total cross sections
 - EWC is moderate (% level)
 - Increase with center-of-mass energy in general (not a real surprise)
 - LO₂ and NLO₂ accidentally cancel at 13 TeV
 - **HBR** only partly cancels **NLO EW**
 - **EWC** is enhanced by boosted final states $p_T(t) \ge 200 \text{ GeV}$, $p_T(\bar{t}) \ge 200 \text{ GeV}$, $p_T(V) \ge 200 \text{ GeV}$

 $\sigma_{\text{HBR}}(t\bar{t}H) = \sigma(t\bar{t}HH) + \sigma(t\bar{t}HZ) + \sigma(t\bar{t}HW^{+}) + \sigma(t\bar{t}HW^{-}),$ 100 TeV8 TeV 13 TeV $ttH: \delta(\%)$ $40.8^{+9.3}_{-9.1} \pm 1.0$ $25.9^{+5.4}_{-11.1} \pm 3.5$ $29.7^{+6.8}_{-11.1} \pm 2.8 \ (24.2^{+4.8}_{-10.6} \pm 4.5)$ NLO QCD $1.2 \pm 0.9 \ (2.8 \pm 2.0)$ LO EW 1.8 ± 1.3 0.0 ± 0.2 LO EW no γ $-0.4 \pm 0.0 \, (-0.2 \pm 0.0)$ -0.3 ± 0.0 -0.6 ± 0.0 -2.7 ± 0.0 NLO EW -0.6 ± 0.1 $-1.2 \pm 0.1 \; (-8.2 \pm 0.3)$ NLO EW no γ $-1.4 \pm 0.0 \; (-8.5 \pm 0.2)$ -0.7 ± 0.0 -2.7 ± 0.0 0.89(1.87)HBR 0.880.91

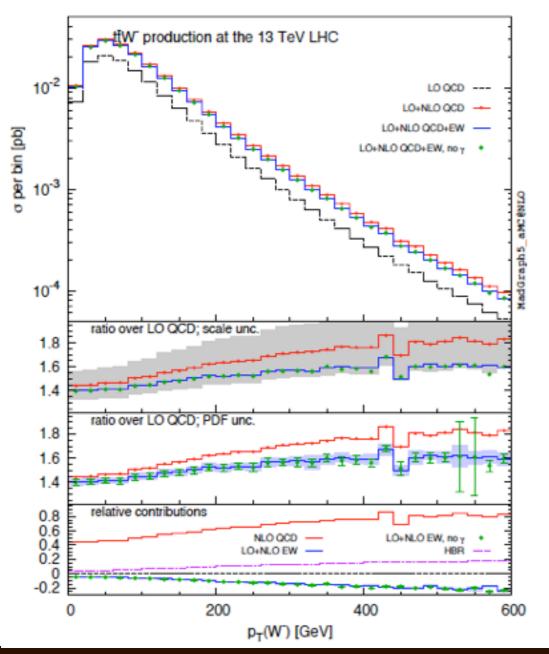


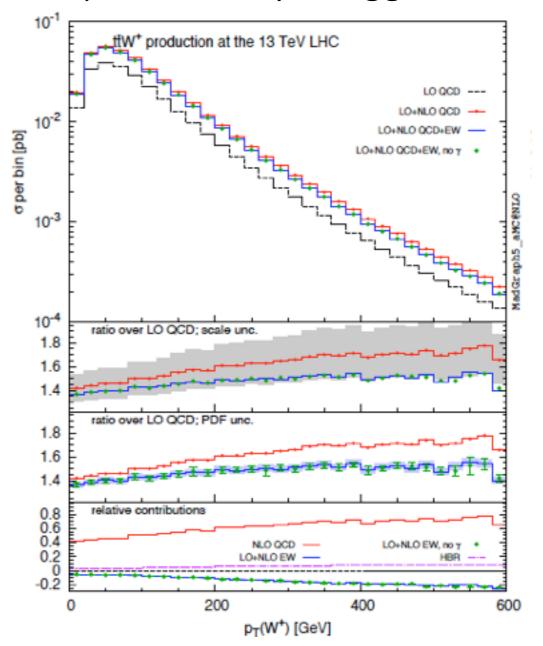


Frixione, Hirschi, HSS, Pagani, Zaro '14,'15

- EWC on differential distributions (and for fiducial xs)
 - Both NLO EW and photon PDF become important when boost final states

NNPDF2.3QED here





Frixione, Hirschi, HSS, Pagani, Zaro '14,'15

- EWC on differential distributions (and for fiducial xs)
 - Both NLO EW and photon PDF become important when boost final states
 NNPDF2.3QED here
 - EWC for ttW is more significant (~-8% at 13 TeV) than ttH and ttZ
 - No LO EW to cancel NLO EW (color flow) and HBR opens gg initial states

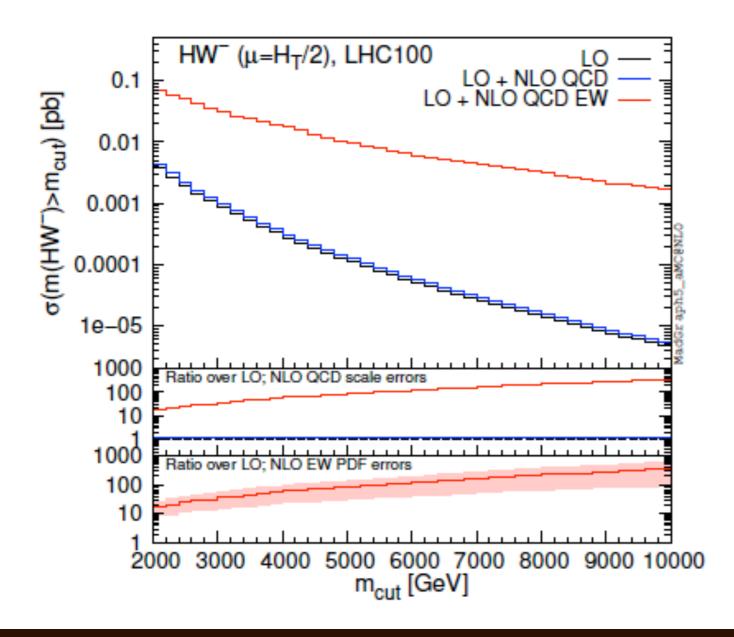
Frixione, Hirschi, HSS, Pagani, Zaro '14,'15

- EWC on differential distributions (and for fiducial xs)
 - Both NLO EW and photon PDF become important when boost final states
 NNPDF2.3QED here
 - EWC for ttW is more significant (~-8% at 13 TeV) than ttH and ttZ
 - No LO EW to cancel NLO EW (color flow) and HBR opens gg initial states
- Is EWC for ttbarH (or ttbarV) relevant? YES
 - Current scale uncertainty in NLO QCD is 10%
 - Will be improved by the theory community with NNLO QCD corrections
 - Even at the moment, EWC will be relevant, especially at Sudakov region
 - EWC is also quite important for the cross section ratios, e.g. ttbarH/ttbarZ

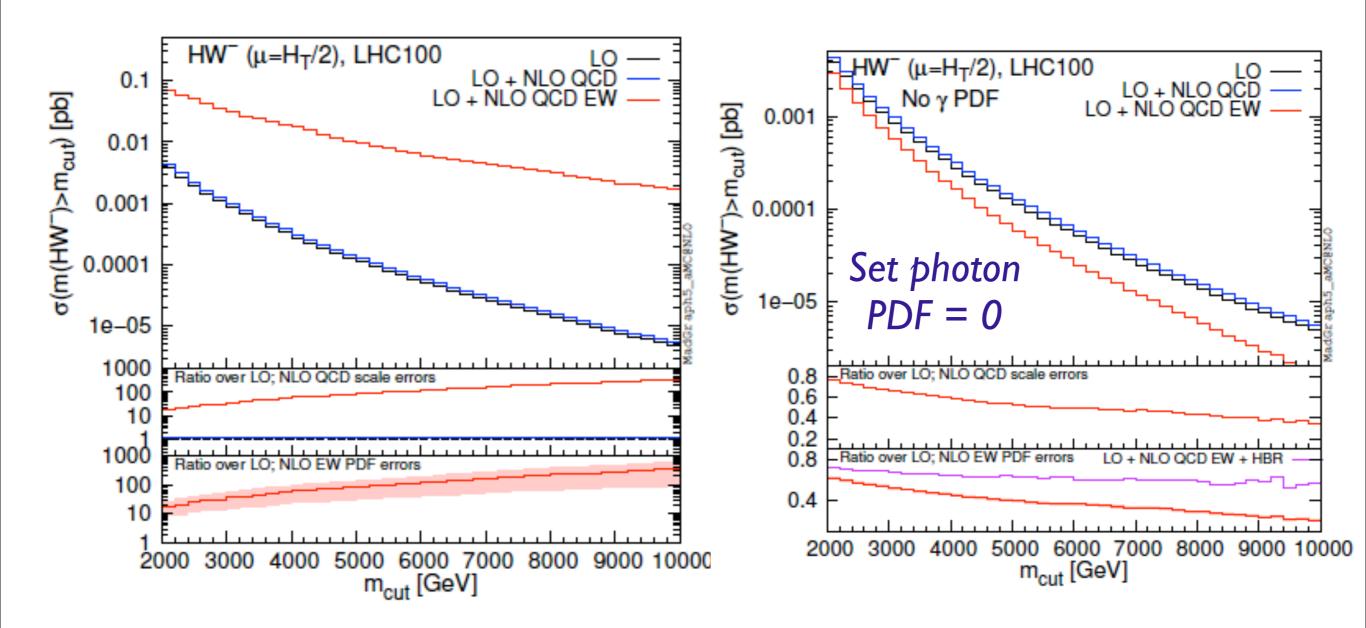
		$\alpha(m_Z)$ scheme		G_{μ} scheme			
		$\sigma(t\bar{t}H)[\mathrm{pb}]$	$\sigma(t\bar{t}Z)[\mathrm{pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$	$\sigma(t\bar{t}H)[{ m pb}]$	$\sigma(t\bar{t}Z)[\mathrm{pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$
13 TeV	NLO QCD	0.475	0.785	0.606	0.462	0.763	0.606
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ Weak	-0.006773	-0.02516		0.004587	-0.007904	
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ EW	-0.0045	-0.022		0.0071	-0.0033	
	NLO QCD+Weak	0.468	0.760	0.617	0.467	0.755	0.619
	NLO QCD+EW	0.471	0.763	0.617	0.469	0.760	0.618
100 TeV	NLO QCD	33.9	57.9	0.585	32.9	56.3	0.585
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ Weak	-0.7295	-2.146		0.0269	-0.8973	
	$\mathcal{O}(\alpha_S^2 \alpha^2)$ EW	-0.65	-2.0		0.14	-0.77	
	NLO QCD+Weak	33.1	55.8	0.594	32.9	55.4	0.594
	NLO QCD+EW	33.2	55.9	0.594	33.1	55.6	0.595

Mangano, Plehn, Reimitz, Schell, HSS '15

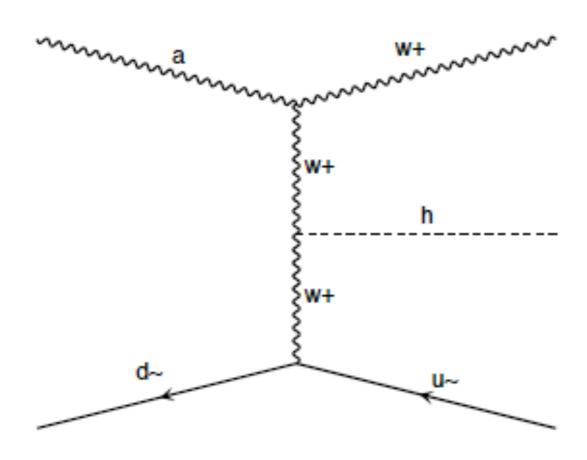
Frixione, Hirschi, HSS, Pagani, Zaro '14,'15


- EWC on differential distributions (and for fiducial xs)
 - Both NLO EW and photon PDF become important when boost final states
 NNPDF2.3QED here
 - EWC for ttW is more significant (~-8% at 13 TeV) than ttH and ttZ
 - No LO EW to cancel NLO EW (color flow) and HBR opens gg initial states
- Is EWC for ttbarH (or ttbarV) relevant? YES
 - Current scale uncertainty in NLO QCD is 10%
 - Will be improved by the theory community with NNLO QCD corrections
 - Even at the moment, EWC will be relevant, especially at Sudakov region
 - EWC is also quite important for the cross section ratios, e.g. ttbarH/ttbarZ
 - The results are in the LHCHXSWG recommendation in YR4

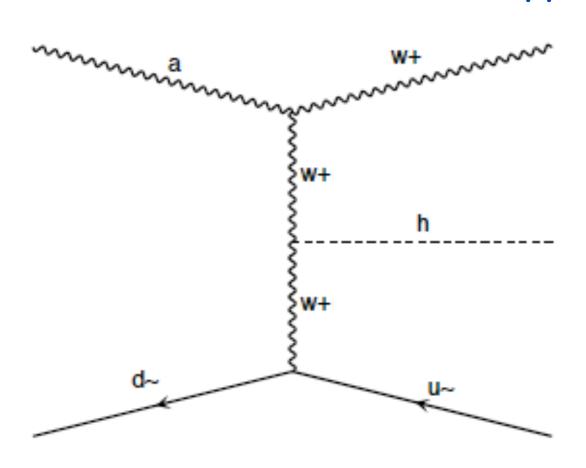
- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12

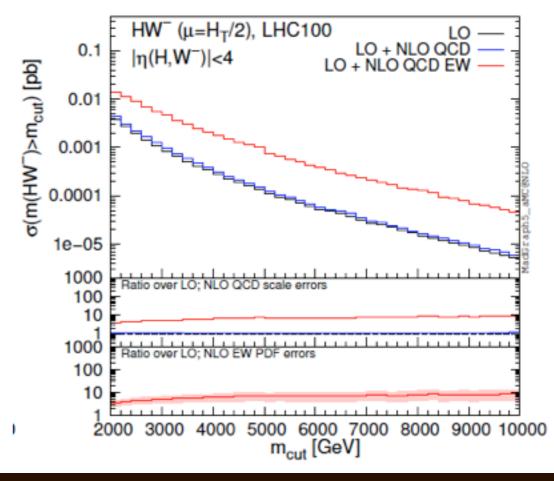


- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why?)



- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why?)
 - It is mainly coming from photon initial state



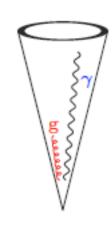

- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant

- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant
 - Such a contribution can be suppressed by cut e.g. on pseudorapidity

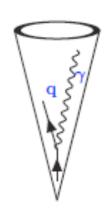
- A funny and surprising example is HW production
 - NLO EW: Ciccolini, Dittmaier, Kramer '03
 - NLO EW with W decay: Denner, Dittmaier, Kallweit, Much '12
- Huge EWC (~10-100) is observed above 2 TeV inv. mass (why?)
 - It is mainly coming from photon initial state
 - There is no photon-quark or gluon-quark for H+jet at Born, when W soft/coll.
 - At Born, HW is produced via s-channel only, while NLO introduces t-channel
 - At large inv. mass, t-channel is dominant
 - Such a contribution can be suppressed by cut e.g. on pseudorapidity
- Message: do not simply overlook EWC even you are not a precision guy

A nontrivial (but important) process lacking EWC (surprising?)

- A nontrivial (but important) process lacking EWC (surprising?)
 - In the Les Houches wishlist 2013

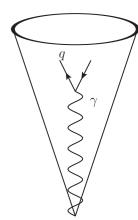

Process	known	desired	details
$t\overline{t}$	$\sigma_{ m tot}$ @ NNLO QCD	$d\sigma(\text{top decays})$	with top decays
	$d\sigma(\text{top decays})$ @ NLO QCD	@ NNLO QCD + NLO EW	
	$d\sigma(\text{stable tops})$ @ NLO EW		
$t\bar{t} + j$	$d\sigma$ (NWA top decays) @ NLO QCD		
single-top			
dijet	$d\sigma(gg)$ @ NNLO QCD	$\mathrm{d}\sigma$	
	$d\sigma$ @ NLO weak	@ NNLO QCD + NLO EW	
3j	$d\sigma$ @ NLO QCD	$d\sigma$	
		@ NNLO QCD + NLO EW	
$\gamma + j$			γ + b for bottom PDF

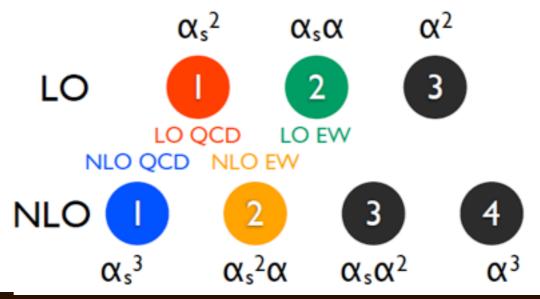
- A nontrivial (but important) process lacking EWC (surprising?)
 - In the Les Houches wishlist 2013
 - Care must be paid to photon clustering



- A nontrivial (but important) process lacking EWC (surprising?)
 - In the Les Houches wishlist 2013
 - Care must be paid to photon clustering
 - QCD parton-photon recombination in jet processes
 - hard photon containing gluon is not QCD IR safe

- A nontrivial (but important) process lacking EWC (surprising?)
 - In the Les Houches wishlist 2013
 - Care must be paid to photon clustering
 - QCD parton-photon recombination in jet processes
 - hard photon containing gluon is not QCD IR safe
 - hard photon containing quark is not QED IR safe

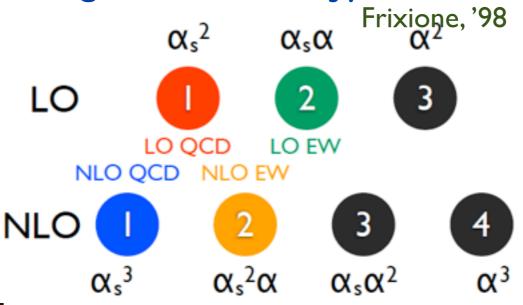




- A nontrivial (but important) process lacking EWC (surprising?)
 - In the Les Houches wishlist 2013
 - Care must be paid to photon clustering
 - QCD parton-photon recombination in jet processes
 - hard photon containing gluon is not QCD IR safe
 - hard photon containing quark is not QED IR safe
 - Two current methods for second issue: FF and close quark-photon = quark

Denner, Hofer, Scharf, Uccirati' 14 Kallweit, Lindert, Maierhofer, Pozzorini, Schonherr,' 14

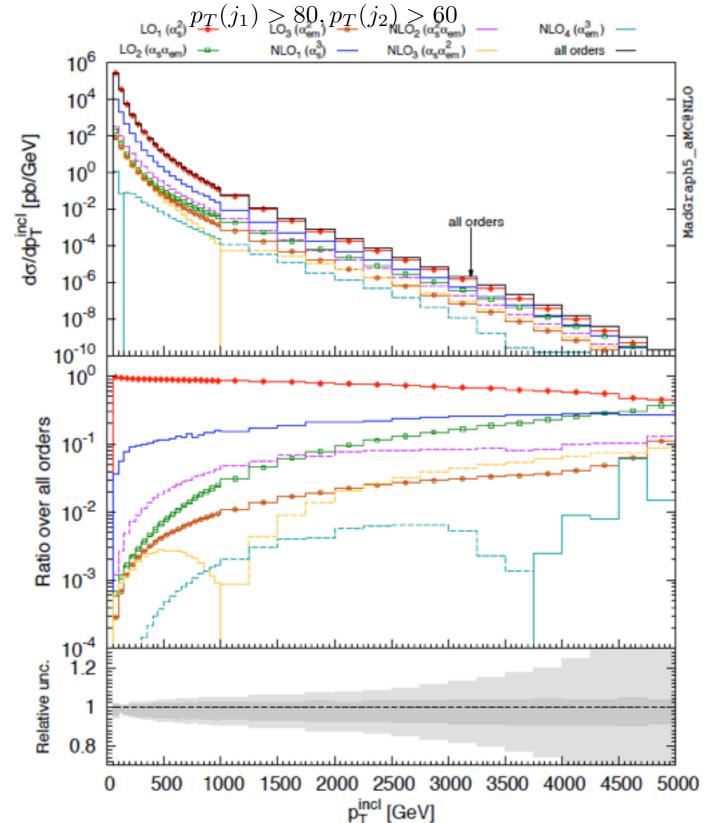
- For the first issue: they both use a cut on the energy fraction of photon
- cut on the energy fraction of photon is not always working
- Very often in subleading contr., sometimes also in leading EWC



Frederix, Frixione, Hirschi, HSS, Pagani, Zaro to appear

- A nontrivial (but important) process lacking EWC (surprising?)
 - In the Les Houches wishlist 2013
 - Care must be paid to photon clustering
 - QCD parton-photon recombination in jet processes
 - hard photon containing gluon is not QCD IR safe
 - hard photon containing quark is not QED IR safe
 - Two current methods for second issue: FF and close quark-photon = quark

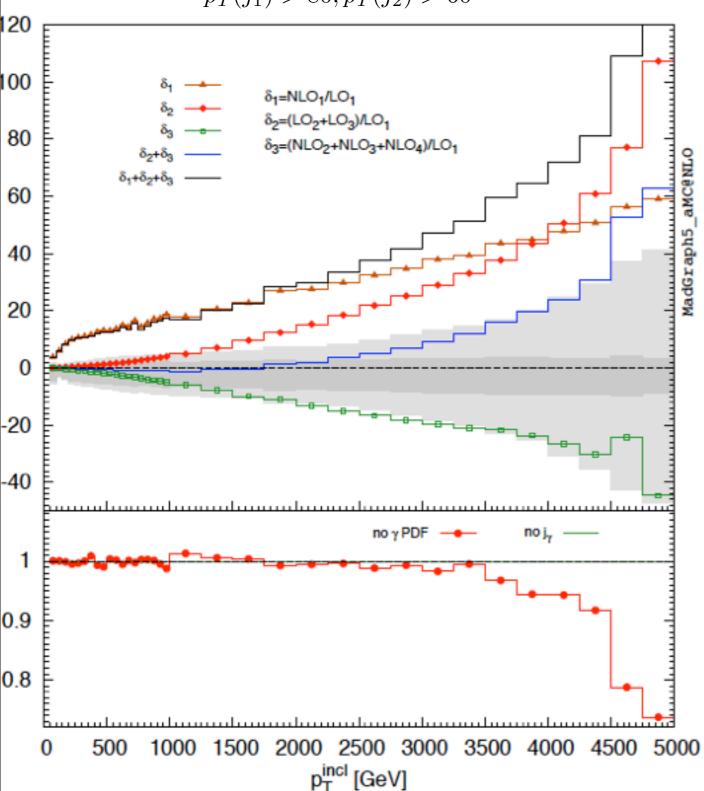
Denner, Hofer, Scharf, Uccirati' 14 Kallweit, Lindert, Maierhofer, Pozzorini, Schonherr,' 14


- For the first issue: they both use a cut on the energy fraction of photon
- cut on the energy fraction of photon is not always working
- Very often in subleading contr., sometimes also in leading EWC
- We try to include all blobs for dijet production
- Democrate jet clustering and Frixione-type criterion for "photon jet"

CERN

jets: k_T with R=0.7

Frederix, Frixione, Hirschi, HSS, Pagani, Zaro to appear

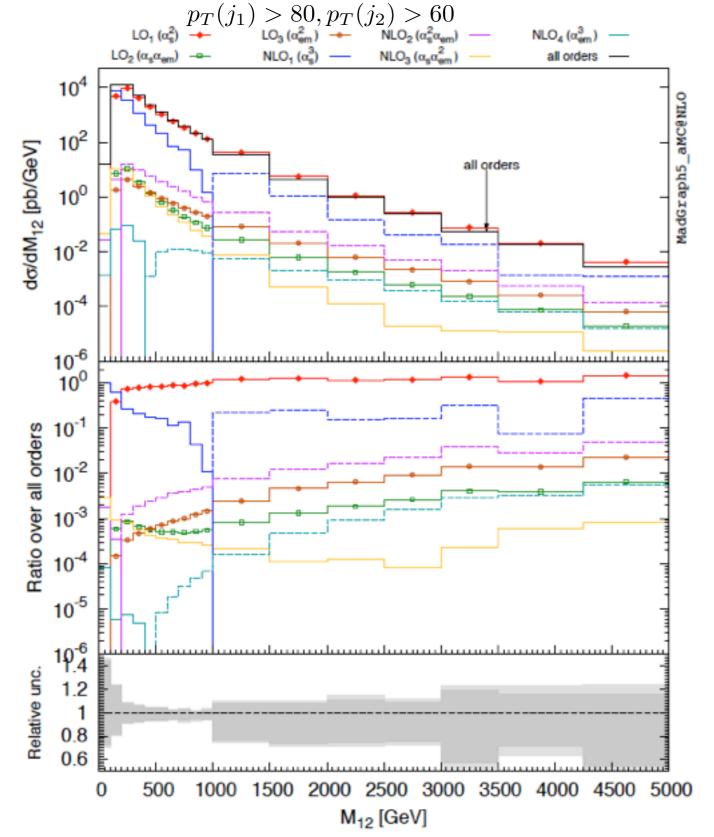

- p_T inclusive is crucial for PDF fit
- Breakdown of different contributions
- QCD correction is small in this obser.
- EWC (LO₂) is important in the tail
- Hierarchy between different orders

CERN

jets: k_T with R=0.7

 $p_T(j_1) > 80, p_T(j_2) > 60$

Frederix, Frixione, Hirschi, HSS, Pagani, Zaro to appear



- p_T inclusive is crucial for PDF fit
- Breakdown of different contributions
- QCD correction is small in this obser.
- EWC (LO₂) is important in the tail
- Hierarchy between different orders
- In the tail, photon PDF is important
- We use NNPDF2.3QED (max photon)
- Photon jet is very rare in general

CERN

jets: k_T with R=0.7

Frederix, Frixione, Hirschi, HSS, Pagani, Zaro to appear

- p_T inclusive is crucial for PDF fit
- Breakdown of different contributions
- QCD correction is small in this obser.
- EWC (LO₂) is important in the tail
- Hierarchy between different orders
- In the tail, photon PDF is important
- We use NNPDF2.3QED (max photon)
- Photon jet is very rare in general
- inv. mass is crucial in BSM search
- inv. mass is insensitive to photon PDF

SUMMARY

- Precision theory requires the good knowledge of EW corrections
- EW corrections can also be enhanced in some (not rare) cases
- It also requires more study on the new ingredients: e.g. PDF and FF
- Many challenges are still present with both QCD and EWC, e.g. to PS
- Great progress in automation has been seen in the recent years
- MadGraph5_aMC@NLO will be released with EWC soon (hopefully:-)

Cho tôi biết! Thank you for your attention!