Exotic Higgs Decay Research at CEPC

L.R. Flores Castillo (CUHK) Zhenxing Chen (PKU \& IHEP)
Tao Liu (HKUST) Xin Mo (IHEP) Manqi Ruan (IHEP) Jiawei Wang (CUHK)

Precision theory for precise measurements at LHC and future colliders Quy-Nhon, Vietnam

Outline

(1) Introduction
(2) Analysis For Invisible Decay
(3) Analysis For Semi-invisible Decay

4 Summary

Introduction

Motivation

- Current measurement of Higgs branching ratios at LHC allows for a significant fraction of invisible or exotic decay
- Searching for exotic decay is an important and straightforward way to distinguish SM-like Higgs boson from SM ones
- CEPC as a Higgs factory provides great opportunities for such searches
- Information of the Higgs can be obtained from the reconstructed Z-leptons via the recoil-mass method

Exotic Higgs decay at CEPC

- About 1 million Higgs events will be produced by CEPC
- The dominant Higgs production process is via Higgsstrahlung $(Z H)$ at CEPC

- By tagging the products of Z boson decay, the Higgs candidate can be reconstructed via: (recoil-mass method)

$$
\begin{aligned}
m_{r e c}^{2} & =\left(\sqrt{s}-E_{l l}\right)^{2}-\mathbf{p}_{l l}^{2}=s-2 \sqrt{s} E_{l l}+E_{l l}^{2}-\mathbf{p}_{l l}^{2} \\
& =s-2 \sqrt{s}\left(E_{l 1}+E_{l 2}\right)+m_{l l}^{2}
\end{aligned}
$$

Plan and status

Channels

- $h \rightarrow M E T$
- $h \rightarrow \tau \mu$
- $h \rightarrow R+X$
- $h \rightarrow R R$
- $h \rightarrow Z R$
- For each of the last three decay modes, we look into $R \rightarrow b b, R \rightarrow l l$ and $R \rightarrow \gamma \gamma$
- Scan over the mass of the light resonance R (and other mass parameters)
- An upper confident limit for the branching ratio for each channel at CEPC is desired

Plan and status

Channels

- $h \rightarrow M E T$
- $h \rightarrow \tau \mu$
- $h \rightarrow R+X$
- $h \rightarrow R R$
- $h \rightarrow Z R$
- For each of the last three decay modes, we look into $R \rightarrow b b, R \rightarrow l l$ and $R \rightarrow \gamma \gamma$
- Scan over the mass of the light resonance R (and other mass parameters)
- An upper confident limit for the branching ratio for each channel at CEPC is desired

Analysis For Invisible Decay

Modelling

- ZH channel:
- Same coupling of H to SM particles
- Extra coupling of H to invisible particles
- Other SM decays unchanged
- Total $Z H$ signal yield not changed for the total cross section of $Z H$ is fixed
- Accuracy depends on $\operatorname{Br}(H \rightarrow i n v)$

Samples

- CM energy 250 GeV
- $Z H$ signal on 3 channels: $Z \rightarrow e e, Z \rightarrow \mu \mu$ and $Z \rightarrow q q$
- Signal: full-simulated with Mokka v08-03 and reconstructed with Arbor v3_1
- Background: fast-simulated with momentum resolution and detection efficiency parameterized for different particle types
- Integrated luminosity: $5 \mathrm{ab}^{-1}$

Measurement via $\mu \mu$

Cut flow:

	ZH	ZZ	WW	ZZorWW	Single Z	Z(2i)
Total	35247	5347053	44180832	17801222	7809747	418595861
$\mathrm{~N}_{\mu+}>=1, \mathrm{~N}_{\mu}>=1$	95.73%	11.95%	0.65%	3.92%	9.75%	1.64%
$120 \mathrm{GeV} / \mathrm{c}^{2}<\mathrm{M}_{\text {rec }}<150 \mathrm{GeV} / \mathrm{c}^{2}$	93.19%	1.71%	0.23%	0.70%	1.93%	0.17%
$80{\mathrm{GeV} / \mathrm{c}^{2}<\mathrm{M}_{\mu+\mu-}<100 \mathrm{GeV} / \mathrm{c}^{2}}$	85.47%	0.68%	0.06%	0.22%	0.22%	0.10%
$\mathrm{P}_{\mathrm{TZ}}>20 \mathrm{GeV} / \mathrm{c}$	80.22%	0.57%	0.06%	0.17%	0.16%	0.02%
$\|\varphi \mu+-\varphi \mu-\|<175$	77.76%	0.51%	0.05%	0.17%	0.15%	0.01%
BDT cut	65.48%	0.26%	0.01%	0.05%	0.06%	0.01%
$120 \mathrm{GeV} / \mathrm{c}^{2}<\mathrm{M}_{\mathrm{rec}}<140 \mathrm{GeV} / \mathrm{c}^{2}$	65.33%	0.26%	0.01%	0.05%	0.06%	0.01%

Measurement via $\mu \mu$

The cross section of SM $Z H$ is fixed Varied fractions of Higgs invisible decay are combined with the SM sample

Measurement via ee

Measurement via $q q$

Upper limit of $\mathrm{Br}(H \rightarrow i n v)$

Measurement on $q q$ channel:

Upper confident limit of $\operatorname{Br}(H \rightarrow i n v)$ at 95\% confidence level:

- $q q: 1.25 \times 10^{-3}$
- ee: 1.8×10^{-2}
- $\mu \mu: 1.2 \times 10^{-2}$

Conclusion: Combining all three channels, the limit of $\operatorname{Br}(H \rightarrow i n v)$ on CEPC detector is 1.24×10^{-3}

Analysis For Semi-invisible Decay

Signal for semi-invisible channel

χ_{1}^{0} and χ_{2}^{0} are the lightest and second lightest neutralinos respectively. h_{1} is a scalar or pseudo-scalar. (χ_{1}^{0} invisible or decaying invisibly) Vary the mass parameters: $M_{\chi_{1}^{0}}, M_{\chi_{2}^{0}}$ and $M_{h_{1}}$ (e.g. $M_{\chi_{1}^{0}}=0$, $M_{\chi_{2}^{0}}=80 \mathrm{GeV}$ and $M_{h_{1}}=45 \mathrm{GeV}$)

Signal for semi-invisible channel

- Only consider $Z \rightarrow \mu^{+} \mu^{-}$
- (Will perform the same analysis for $Z \rightarrow e^{+} e^{-}$channel afterwards)
- For a set of values of $M_{\chi_{1}^{0}}, M_{\chi_{2}^{0}}$ and $M_{h_{1}}, 10000$ events are generated
- CM energy 250 GeV , Higgs mass 125 GeV
- Generated by MadGraph(ver 2.3.2) using NMSSM model without ISR
- Full simulated with Mokka (v08-03, with model CEPC_v1) and reconstructed with Arbor (v3_KD)

Backgrounds

- Looking for events with 2 jets and 2 isolated muons
- Generated by Whizard (ver 1.95) and simulated with Mokka v08-03 and reconstructed with Arbor v3_KD)
- All background events are normalized to the integrated luminosity of $5 \mathrm{ab}^{-1}$
- $Z Z$ backgrounds:
- Leptonic decays: $Z Z \rightarrow 4 l$
- Semi-leptonic: $Z Z \rightarrow 2 l+2 f$
- $Z H$ background: $Z H \rightarrow \mu \mu b b$

Cut flow

- FSClasser: Pre-selection for 2 isolated muons +2 jets, including $M_{l l}$ cut 81.18 GeV $<M_{l l}<101.18 \mathrm{GeV}$
- Recoil mass: $110 \mathrm{GeV}<M_{\text {reco }}<140 \mathrm{GeV}$
- B likeness: at least one jet with b likeness larger than 0.9
- Missing energy: $E_{\text {missing }}>20 \mathrm{GeV}$
- Invariant mass of the di-jet: $M_{j j}$ cut depends on mass parameters

Cuts	No cut	FSClasser	$M_{\text {reco }}$	b likeness	$E_{\text {missing }}$	$M_{j j}$
Signal	10000	8420	8356	8356	6514	6482
$Z H$ background	35849	28002	25874	13783	2399	19
$Z Z$ background	3004042	280140	39700	5957	3639	69
A typical cut flow for $M_{\chi_{1}^{0}}=0, M_{\chi_{2}^{0}}=80$		GeV and $M_{h_{1}}=45 \mathrm{GeV}$				

Parameters for scan

Fix $M_{\chi_{1}^{0}}=0$

- $10 \mathrm{GeV}<M_{h_{1}}<70 \mathrm{GeV}(15,25,35,45,55,65 \mathrm{GeV})$
- $10 \mathrm{GeV}<M_{\chi_{2}^{0}}<125 \mathrm{GeV}(20,40,60,80,100,120 \mathrm{GeV})$

Fix $M_{h_{1}}=30 \mathrm{GeV}$

- $0 \mathrm{GeV}<M_{\chi_{1}^{0}}<60 \mathrm{GeV}(5,15,25,35,45,55 \mathrm{GeV})$
- $10 \mathrm{GeV}<M_{\chi_{2}^{0}}<125 \mathrm{GeV}(20,40,60,80,100,120 \mathrm{GeV})$

Results of scan

Distribution of upper confident limit at 2- σ significance of $\operatorname{Br}(H \rightarrow s e m i-i n v i s i b l e) / \operatorname{Br}(H \rightarrow b \bar{b})$

Fixing $M_{\chi_{1}^{0}}=0$

Fixing $M_{h_{1}}=30 \mathrm{GeV}$

Results of scan

- The most important parameter: $M_{h_{1}}$
- The significance reduces as $M_{h_{1}}$ gets higher (close to Z pole), and thus lowering the sensitivity and giving a higher branching ratio limit (although b tagging is more accurate for high $M_{h_{1}}$)
- $M_{\chi_{1}^{0}}$ and $M_{\chi_{2}^{0}}$ mainly affect $E_{\text {missing }}$, which is a low-efficient cut

Conclusion: the upper limit for branching ratio at 95% confidence level varies with the mass parameters within the range 6×10^{-4} to 1.9×10^{-3}

Summary

Summay

- Full-simulated signal samples are analyzed using the recoil-mass method
- For the invisible and semi-invisible channels, the upper confident limits for the branching ratio that CEPC could detect are given
- Will finish other channels ($R \rightarrow l l$ and $R \rightarrow \gamma \gamma$) of the semi-invisible decay
- We have started analysis for $h \rightarrow \tau \mu, h \rightarrow R R$ and $h \rightarrow Z R$ channels

Thank You!

Backup

Rates of SM processes

Measurement for invisible channel via $\mu \mu$

(plots normalized to max bin height)
(1) At least one pair of $\mu^{+} \mu^{-}$is reconstructed
(2) Recoil mass of $\mu^{+} \mu^{-}: 120 \mathrm{GeV}<M_{\mu^{+} \mu^{-}}^{r e c o}<150 \mathrm{GeV}$
(3) Invariant mass of $\mu^{+} \mu^{-}: 80 \mathrm{GeV}<M_{\mu^{+} \mu^{-}}<100 \mathrm{GeV}$

Based on (1)

Measurement for invisible channel via $\mu \mu$

(plots normalized to max bin height)
(9) Transverse momentum of Z boson candidate: $P_{T}^{Z}>20 \mathrm{GeV}$
(5) The angle between two μ^{+}and $\mu^{-}: \Delta \Phi<175^{\circ}$

Measurement for invisible channel via $q q$

(plots normalized to signal event number) Pre-selection:

- Inclusive 2 jets
- $N_{P F O}>10$
- $M_{\text {vis }}<130 \mathrm{GeV} / c^{2}$

Measurement for invisible channel via $q q$

(plots normalized to signal event number)

- Transverse momentum of Z boson candidate: $P_{T}^{Z}>20 \mathrm{GeV}$
- The angle between two jets: acol $>50^{\circ}$

Measurement for invisible channel via $q q$

(plots normalized to signal event number)

- Missing energy: $130 \mathrm{GeV}<E_{\text {miss }}<170 \mathrm{GeV}$
- The invariant mass of two jets: $75 \mathrm{GeV}<M_{j j}<100 \mathrm{GeV}$

Measurement for invisible channel via $q q$

Cut flow:

	Signal	$q q H$	$w H$	SM BKG
Pre-cut	721232	8435	205822	69071903
$\mathrm{~N}_{\text {lep }}=0$	710648	5738	188928	41315384
$15<\mathrm{N}_{\text {PFO }}<85$	708747	5464	171283	39890767
$\mathrm{P}_{\mathrm{T}}>20 \mathrm{GeV} / \mathrm{c}$	658280	5086	157211	3547505
Acol >50	650532	4423	153950	1735168
$130 \mathrm{GeV}<\mathrm{E}_{\text {miss }}<170 \mathrm{GeV}$	629616	668	38430	620395
$75 \mathrm{GeV}<\mathrm{M}_{\mathrm{ij}}<100 \mathrm{GeV}$	571924	317	19503	484991
$110 \mathrm{GeV}<\mathrm{M}_{\text {reco }}<150 \mathrm{GeV}$	550989	287	16322	336582

Measurement for invisible channel via ee

Cut flow:

	ZH	ZZ	WW	ZZorWW	Z	W	ZorW	Z(2i)
total	35247	5436373	44181064	17799208	7808854	17020374	1246802	418598154
$\begin{gathered} \mathrm{N}_{\mathrm{e}^{+}}>=1, \mathrm{~N}_{\mathrm{e}^{>}}=1 \\ \cos \theta_{\mathrm{e}+}>-0.9, \cos \theta_{\mathrm{e}-}<0.9 \end{gathered}$	28010	13615	16266	20105	574212	222811	626516	6594087
$120 \mathrm{GeV} / \mathrm{c}^{2}<\mathrm{M}_{\text {rec }}<160 \mathrm{GeV} / \mathrm{c}^{2}$	26437	903	1428	3667	122997	82943	156757	1204575
$80 \mathrm{GeV} / \mathrm{c}^{2}<\mathrm{M}_{\mathrm{e}+\mathrm{e}}<100 \mathrm{GeV} / \mathrm{c}^{2}$	22958	118	220	1497	45438	25050	53851	414026
$\mathrm{P}_{\mathrm{TZ}}>20 \mathrm{GeV} / \mathrm{c}$	21574	85	166	1056	36414	22252	43108	263375
$\|\varphi \mathrm{e}+-\varphi \mathrm{e}-\|<175$	20908	64	157	986	33909	20613	41468	206862
BDT cut	14614	4	9	68	10961	3512	10085	37160

Semi-invisible decay

$$
M_{\chi_{1}^{0}}=0, M_{\chi_{2}^{0}}=80 \mathrm{GeV} \text { and } M_{h_{1}}=35 \mathrm{GeV}
$$

$$
M_{\chi_{1}^{0}}=0, M_{\chi_{2}^{0}}=100 \mathrm{GeV} \text { and } M_{h_{1}}=45 \mathrm{GeV}
$$

