A Search for Doubly Charmed Baryons at LHCb

Ao Xu Tsinghua University Supervised by: Yuanning Gao, Patrick Spradlin 11 August, 2016

About me

• Third-year undergraduate at Tsinghua University, Beijing, China

Tsinghua University

Outline

- Introduction
- Experimental status
- Analysis strategy
- Generator level cuts
- Study of offline selection
- Plan

Introduction

- Theoretical motivation
 - The quark model proposed by Gell-Mann and Zweig in 1964 revolutionized our understanding of the structure of matter with strong interactions.
 - It predicts several doubly heavy flavor baryons, but none of them is solidly observed.
 - Doubly charmed baryons are interesting places for the study of non-perturbative QCD.
- Production
 - Formation
 - Production of two c quarks
 - Binding into di-quark structure
 - Hadronization
 - $\sigma(pp \to \Xi_{cc}^{\pm}X) \approx 110 \text{ nb}$
- Theoretical predictions of \mathcal{Z}_{cc}^+ mass and lifetime
 - $m_{\Xi_{cc}^+}$: ranges from 3500 to 3700 MeV/ c^2
 - $\tau_{\Xi_{cc}^+}$: ranges from 110 to 250 fs
- LHCb is a good place to search for \mathcal{Z}_{cc}^+ and other doubly heavy flavor baryons.

20-plet with SU(3) octet

20-plet with SU(3) decuplet

Experimental status

- SELEX reported observation of \mathcal{Z}_{cc}^+ with more than 5σ significane in 2002. But observed \mathcal{Z}_{cc}^+ has much smaller lifetime and much larger cross-section than theoretical predictions.
- FOCUS, Belle and BaBar failed to repeat this observation.

12

8

12

Events /5 [MeV/c²]

A search for doubly charmed baryons

Experimental status

- Search @LHCb in 2013
 - In $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ decay mode using 2011 data of 0.65 fb⁻¹
 - No significant signal is found.
 - Upper limits on *R* (@95% CL) are given as a function of δm for different lifetime hypotheses, where $R \equiv \frac{\sigma(\Xi_{cc}^+)\mathcal{B}(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)}$,

Analysis strategy

- Larger data sample
 - Run1: 1 fb⁻¹ in 2011 and 2 fb⁻¹ in 2012
- Combined decay modes to improve sensitivity, considering branching ratio and detection efficiency
 - $\Xi_{cc}^+ \to \Lambda_c^+ (\to p K^- \pi^+) K^- \pi^+$
 - $\Xi_{cc}^+ \to D^0 (\to K^- \pi^+) p K^- \pi^+$
 - $\Xi_{cc}^+ \to D^+ (\to K^- \pi^+ \pi^+) p K^-$
 - $\Xi_{cc}^+ \to \Xi_c^+ (\to \Xi^- \pi^+ \pi^+) \pi^+ \pi^-$
 - $\Xi_{cc}^+ \to \Xi_c^0 (\to \Xi^- \pi^+) \pi^+$
- Improved stripping cuts

Generator level cuts of $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$

- Motivation
 - Generator level cuts are criteria designed to filter candidates with desired properties during Monte Carlo event generation.
 - Useful generator level cuts are needed to improve MC selection efficiency and optimize computing resources usage.
 - MC selection efficiency: efficiency for candidates to pass certain requirements in reconstruction.
 - MC selection efficiency of current sample is about 0.2%.
- MC sample used
 - Sample size: 510,338 events
 - Each event contains one Ξ_{cc}^{\pm} candidate within LHCb detector acceptance.

 $\begin{array}{c} \Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+ \\ & \hookrightarrow p K^- \pi^+ \end{array}$

Generator level cuts of $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$

- Generator level cuts are determined by comparing the distributions of generator level candidates with that of reconstructed candidates.
 - Red: truth value of generator level candidates
 - Blue: truth value of reconstructed candidates

Generator level cuts of $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$

• Cuts with discrimination power can be determined in a similar way.

Generator level cuts to be applied in the new MC sample generation

Λ_c^+	p_{T}	\geq 2 GeV/c
	p	\geq 20 GeV/c
	Flight distance	≥ 1 mm
Ξ_{cc}^+	p_{T}	\geq 3 GeV/c
	p	\geq 30 GeV/c
K^- (from Ξ_{cc}^+)	p_{T}	$\geq 0.2 \text{ GeV/c}$
π^+ (from Ξ_{cc}^+)	p_{T}	$\geq 0.2 \text{ GeV/c}$
K^- (from Λ_c^+)	p_{T}	$\geq 0.2 \text{ GeV/c}$
π^+ (from Λ_c^+)	p_{T}	$\geq 0.2 \text{ GeV/c}$
Proton	p_{T}	$\geq 0.2 \text{ GeV/c}$
Expected Efficiency		0.55%

A search for doubly charmed baryons

Study of offline selection of $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$

- Preselection: relatively loose rectangular cuts to reduce background
- Multivariate analysis (MVA) is developed to further suppress background.
 - Signal sample: MC sample of size 1449 events, half for training and the other half for testing
 - Background sample: 2012 data reconstructed with wrong charge decay chain $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^-$ of size 13559 events, which is a good description of combinatorial background distribution. Half sample are used for training and the other half for testing.

Input variables of MVA for $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$

• Nine input variables are used, including kinematics variables of \mathcal{Z}_{cc}^+ and

its daughters and the topological variables of the decay chain.

A search for doubly charmed baryons

8/10/16

Output of MVA training and testing

- BDTG algorithm is adopted.
- Evident overtraining is observed possibly due to:
 - the small sample size
 - real overtraining which can be avoided by further algorithm configuration

Plan

- Apply generator level cuts to new MC sample generation with GenXicc generator
- Conduct offline selections using new MC sample
- Determine optimal MVA cut by maximizing the sensitivity

Plan

Acknowledgment

- My supervisors Yuanning Gao and Patrick Spradlin for patient instructions
- My colleagues Paul Soler, Murdo Traill and Zhenwei Yang for inspiring discussions
- The summer student program for an exciting summer

Back up

Monte Carlo production chain

LHCb detector

• A single-arm forward spectrometer

A search for doubly charmed baryons

Generator level study of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$

Decay Chain

•
$$\mathcal{Z}_{cc}^{+} \rightarrow \mathcal{Z}_{c}^{+} \pi^{+} \pi^{-}$$

 $\hookrightarrow \mathcal{Z}^{-} \pi^{+} \pi^{+}$
 $\hookrightarrow \Lambda^{0} \pi^{-}$
 $\hookrightarrow p\pi^{-}$

- MC sample: 571,447 events
- Five truth matched Ξ_{cc}^+ and 30 truth matched Λ^0
- Inefficiency due to the long flight distance of Λ^0
- Not a promising decay mode

Information about MC and data sample

- MC sample for generator level study of $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$
 - Event Type: 26265012
 - 2012 MagDown sample with Sim08f and Reco14a
 - <u>StrippingXiccPlusToLcKPi</u> line of Stripping21
- MC sample for generator level study of $\mathcal{Z}_{cc}^+ \to \mathcal{Z}_c^+ \pi^+ \pi^-$
 - Event Type: 26167110
 - 2012 MagDown sample with Sim08f and Reco14a
 - <u>StrippingXiccXiccPlusToXicPlusPiPi</u> line of Stripping21
- Data sample for MVA
 - Collision12, Beam4000GeV and Reco14
 - <u>StrippingXiccXiccPlusToLcKPiWC</u> line in Stripping21

MVA input variables definition

- Input variables
 - \mathcal{Z}_{cc}^+ MAXDOCA: Maximum distance of the closest approach between all possible pairs of daughters
 - \mathcal{Z}_{cc}^+ IP χ^2 : Difference between the PV fit χ^2 with and without candidate included in the track set
 - Ξ_{cc}^+ ENDVX χ^2 : Decay vertex fit χ^2
 - Ξ_{cc}^+ PV χ^2 : Primary vertex fit χ^2
 - Ξ_{cc}^+ minDaughtersPT: Minimum p_T of daughters
 - Λ_c^+ MAXDOCA
 - $\Lambda_c^+ \operatorname{IP} \chi^2$
 - $\Lambda_c^+ \text{ ENDVX } \chi^2$
 - Λ_c^+ FD χ^2 : Difference between the PV fit χ^2 with and without candidate included in the track set