Densities mixture unfolding for heavy ion jet spectra

Philip Hackstock

TU Vienna

August, 9, 2016

Overview

- Unfolding in general
- · Densities mixture unfolding
- Summer project status quo & plans

The unfolding problem

- Measurements (e.g. dN/dp_T vs. p_T) can be viewed as a convolution of the truth, a response and acceptance function
- Detectors are not perfect
- In vector notation (and in an ideal world):

$$ec{m} = ar{X} ec{t} \ ar{X}^{-1} ec{m} = ec{t} \$$

ullet Inversion of $ar{X}$ generally not possible

Migration Matrix

- created on the base of simulations
- connects measured and 'true' values
- literal redistribution just an analogy

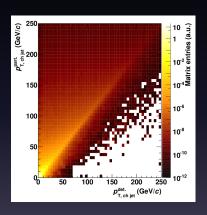


Figure: Rudiger Haake, dissertation, 2015

Mixture Densities unfolding

- Method by Nikolai Gagunashvili from University of Iceland
- Starting point is experimentally measured histogram P
- Representation as linear combination with s components: $P(x') = \sum_{i=1}^{s} \int_{\Omega} dx K_i(x, \lambda_i) A(x) R(x'|x)$

 Ω : domain of x

 K_i : probability density function

A(x): detector's acceptance function

R(x'|x): detector's response function

MDU II

- 'Least square rebuild' histogram: $P(x') = \sum_{i=1}^{s} w_i \int_{\Omega} dx K_i(x, \lambda_i) A(x) R(x'|x)$ w_i : weights for the components
- Find the weights w_i by iterative least square fit
- Truth is then given: $p(x) = \sum_{i=1}^{s} w_i K_i(x; \lambda_i)$

My tasks

- · Fully understand Gagunashvili's code
- Speed up the process with parallel computing
- Adapt it for heavy ion jet spectra for ALICE

References

- Ruediger Haake's dissertation:
 Measurement of charged jets in p-Pb collisions
- Densities mixture unfolding paper by Nikolai Gagunashvili: 1410.1586
- Additional information on unfolding at ATLAS: 1104.2962v1

Contacts

Philip Hackstock philip.hackstock@cern.ch e1253210@student.tuwien.ac.at