Parallelization of ROOT Machine Learning Methods

Pourya Vakilipourotakalou

Supervisors: Prof. Lorenzo Moneta
Prof. Sergei Gleyzer
Overview

- Machine Learning
- ROOT
- TMVA
- Cross Validation
- Parallelization
- Outlook
Machine Learning

Teaching the computers to do something exactly like the way people learn.
How do people learn?

Horse:

Horse!
And this is Machine Learning!

Cake:

Cake!
We train the algorithm on known data sets and we want to find the answer for the unknown cases so we ask the computer to do this.
• An example of classification
• X1 → age of the patient
• X2 → size of the tumor
• Y → output : Malignant or Benign → 0 or 1
• Proposing a function like H(X1,X2) like
 aX1 + bX2 → it can be anything
• Try to find optimal a and b
Machine Learning

More Physical Example

- $X \rightarrow$ vector of Kinematic Variables
- $Y \rightarrow$ output: Higgs (Signal) or Background \rightarrow 0 or 1
- Proposing a function like $F(X)$
ROOT is a modular scientific software framework mainly written in C++ and integrated with other languages such as Python and R. It provides functionalities for big data processing and statistical analysis.
TMVA

ROOT, Machine Learning \rightarrow TMVA

- Toolkit for Multivariate Data Analysis
- Bunch of methods that provides a ROOT-integrated machine learning environment
- It includes Rectangular cut optimization, Boosted/Bagged decision trees, Artificial neural networks, …
Cross Validation

<table>
<thead>
<tr>
<th>Complete dataset</th>
<th>Training dataset</th>
<th>Test dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
</tr>
<tr>
<td>Test Set</td>
<td>Test Set</td>
<td>Test Set</td>
</tr>
</tbody>
</table>

K-fold cross validation (k=4)

- 1\(^{st}\) iteration → Calc. error
- 2\(^{nd}\) iteration → Calc. error
- 3\(^{rd}\) iteration → Calc. error
- 4\(^{th}\) iteration → Calc. error

Calculate avg. error
Cross Validation: PlotROC()

ROC → Receiver Operating Characteristic: a graphical plot that illustrates the performance of a classifier.
Parallelization

ROOT Classes for Parallelization

• ThreadPool \rightarrow Multithreading
• TProcPool \rightarrow Multiprocessing

• Multithreading \rightarrow More difficult to implement: needs locking \rightarrow no Global Variable

• Multiprocessing is easier but in some cases slower

This says Parallelize me!
Outlook

Parallelization of different methods like BDT \rightarrow Boosted Decision Tree
Thank you all very much for your attention!