

Parallelization of ROOT Machine Learning Methods

Pourya Vakilipourtakalou

Supervisors : Prof. Lorenzo Moneta Prof. Sergei Gleyzer

Overview

- Machine Learning
- ROOT
- TMVA
- Cross Validation
- Parallelization
- Outlook

Machine Learning

Teaching the computers to do something exactly like the way people learn.

How do people learn?

And this is Machine Learning!

Cake!

Traditional Programming

We train the algorithm on known data sets and we want to find the answer for the unknown cases so we ask the computer to do this.

Machine Learning

- An example of classification
- X1 \rightarrow age of the patient
- $X2 \rightarrow$ size of the tumor

- $Y \rightarrow output : Malignant or Benign \rightarrow 0 or 1$
- Proposing a function like H(X1,X2) like

 $aX1 + bX2 \rightarrow it can be anything$

Try to find optimal a and b

Machine Learning

More Physical Example

- $X \rightarrow$ vector of Kinematic Variables
- $Y \rightarrow$ output : Higgs (Signal) or Background \rightarrow 0 or 1
- Proposing a function like F(X)

modular scientific software framework

mainly written in **C++**

functionalities for big data processing and statistical analysis

integrated with other languages **Python** and **R**.

ROOT

ROOT, Machine Learning \rightarrow TMVA

- Toolkit for Multivariate Data Analysis
- Bunch of methods that provides a ROOT-integrated machine learning environment
- It includes Rectangular cut optimization, Boosted/Bagged decision trees, Artificial neural networks, ...

Cross Validation

Cross Validation: PlotROC()

 $ROC \rightarrow Receiver Operating Characteristic: in Statistic graphical plot that illustrates the performance of a classifier$

Parallelization

ROOT Classes for Parallelization

ThreadPool → Multithreading
TProcPool → Multiprocessing

- Multithreading → More difficult to Implement : needs locking → no Global Variable
- Multiprocessing is easier but in some cases slower

This says Parallelize me!

Parallelization of different methods like $BDT \rightarrow Boosted Decision Tree$

15

Thank you all very much for your attention!

