Angle dependent characterisation of MAPS

Ben Brüers

August 9, 2016

MAPS ●0000	The ALICE ITS upgrade	My project 000	References
MAPS			ALICE

MAPS •0000	The ALICE ITS upgrade	My project 000	References
MAPS			

$M_{ m onolithic}$

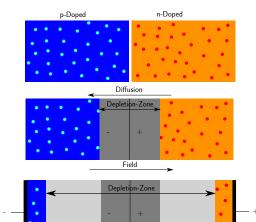
MAPS •0000	The ALICE ITS upgrade	My project 000	References
MAPS			ALICE

$M_{\text{onolithic}}\,A_{\text{ctive}}$

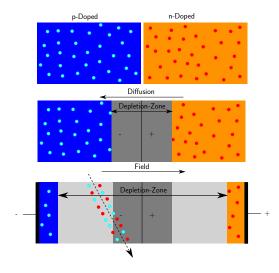
MAPS •0000	The ALICE ITS upgrade	My project 000	References
MAPS			

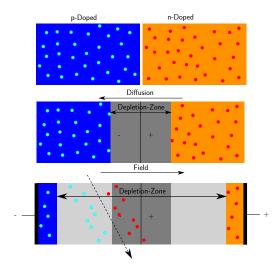
$M_{\text{onolithic}} \, A_{\text{ctive}} \, P_{\text{ixel}}$

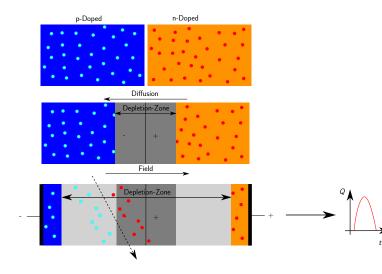
MAPS •0000	The ALICE ITS upgrade	My project 000	References
MAPS			

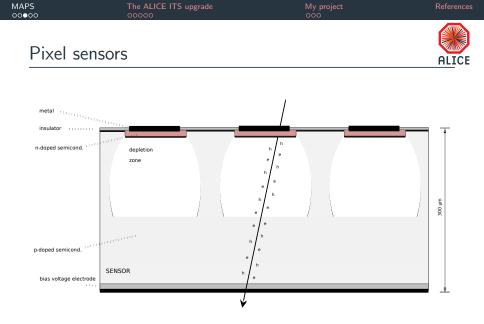

$M_{\text{onolithic}} \: A_{\text{ctive}} \: P_{\text{ixel}} \: S_{\text{ensors}}$

MAPS •0000	The ALICE ITS upgrade	My project 000	References
MAPS			ALICE

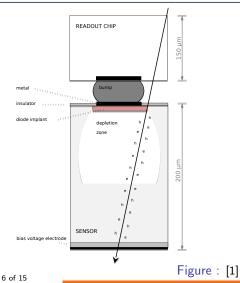

Monolithic Active Pixel Sensors





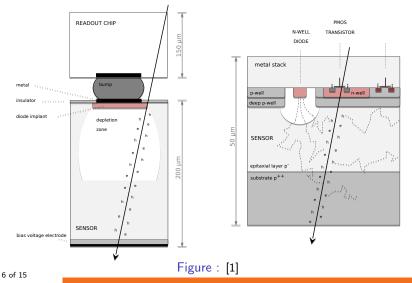


3 of 15

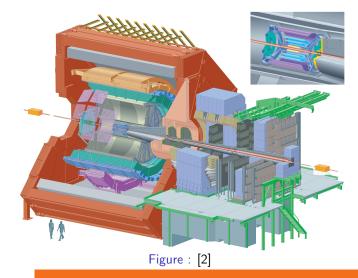

MAP 0000		e My project 000	References
	Pixel sensors		ALICE
		pixel matrix	

MAPS 000●0	The ALICE ITS upgrade	My project 000	References
MAPS			ALICE

Monolithic Active Pixel Sensors



Hybrid VS Monolithic


Hybrid VS Monolithic

The ALICE ITS upgrade ●0000 My project

The ALICE Inner Tracking System (ITS)

The ALICE ITS upgrade

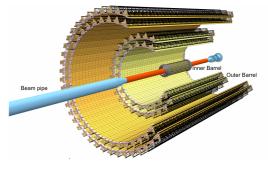


Figure : [3]

The ALICE ITS upgrade

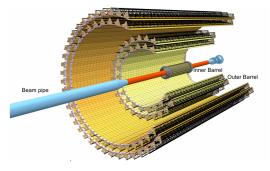
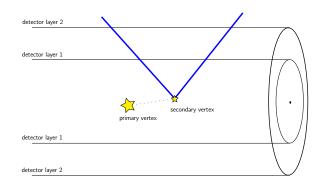
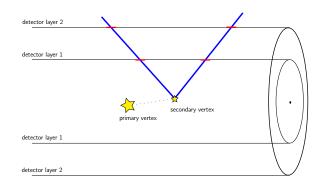
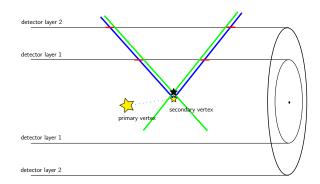
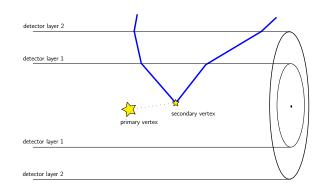



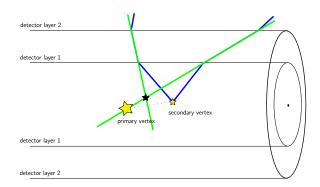
Figure : [3]

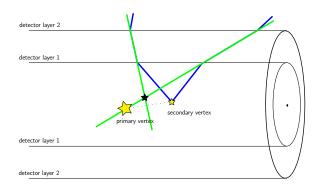

one goal: improve pointing resolution

8 of 15

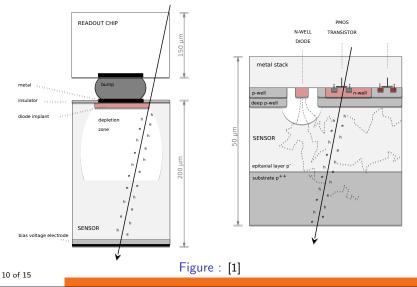








Pointing resolution



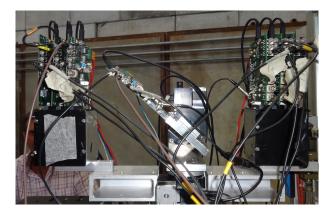
improvement by

- ▷ increase of position resolution
- decrease of multiple scattering

Conclusion: MAPS

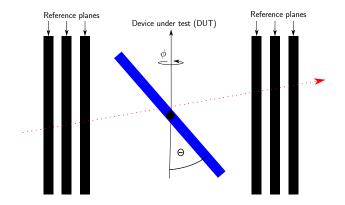
The ALPIDE

My project

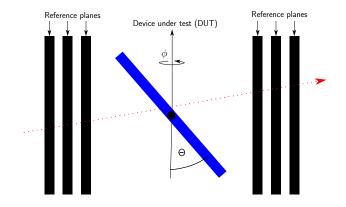


$\mathsf{Figure}:\,[1]$

11 of 15

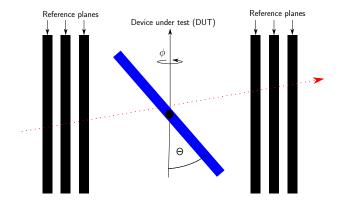


Testbeam Analysis


Testbeam Analysis

References

Testbeam Analysis



detection efficiency

References

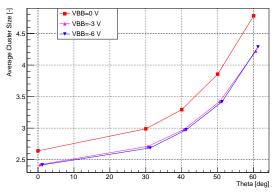
Testbeam Analysis


detection efficiencyposition resolution

12 of 15

References

Testbeam Analysis


- detection efficiency
- position resolution
- cluster shape 12 of 15

MAPS	The ALICE ITS upgrade	My project	References
00000	00000	⊙●○	

ALICE

My first results

MAPS 00000	The ALICE ITS upgrade	My project 00●	References
Conclusion			ALICE

detection efficiency

MAPS 00000	The ALICE ITS upgrade	My project ○○●	References
Conclusion			ALICE

- detection efficiency
- position resolution

MAPS 00000	The ALICE ITS upgrade	My project 00●	References
Conclusion			ALICE

- detection efficiency
- position resolution
- ▶ cluster shape \checkmark

MAPS
00000

Bibliography

- Jacobus Willem van Hoorne. Study and Development of a novel Silicon Pixel Detector for the Upgrade of the ALICE Inner Tracking System. PhD thesis, TU Vienna, Oct 2015. URL https://cds.cern.ch/record/2119197. Presented 24 Nov 2015.
- [2] The ALICE Collaboration et al. The alice experiment at the cern lhc. <u>Journal of Instrumentation</u>, 3(08):S08002, 2008. URL http://stacks.iop.org/1748-0221/3/i=08/a=S08002.
- B. Abelev et al. Technical Design Report for the Upgrade of the ALICE Inner Tracking System. Technical Report CERN-LHCC-2013-024. ALICE-TDR-017, Nov 2013. URL https://cds.cern.ch/record/1625842.

Backup Slides

Position-resolution: how accurately can the position be measured
 Multiple scattering:

$$\sigma_{\Theta} = \frac{19.2 \text{MeV}}{c\beta p} z \sqrt{\frac{x}{X_0}} (1 + 0.038 \ln \frac{x}{X_0})^2$$
$$X_0 = \left(\frac{4\pi\epsilon_0 c^2}{4\alpha N_A e^2}\right) \cdot \frac{A}{Z^2} \frac{1}{\ln\left(\frac{183}{Z^{1/3}}\right)} \cdot \frac{m^2}{z^2}$$

Energy loss of charged particles by excitation and ionisation

- Physical reason: interaction with atomic electrons
- Described by Bethe-Bloch formula

$$-\frac{\mathrm{d}E}{\mathrm{d}s} = 4\pi N_A r_e^2 m_e c^2 \cdot \rho \frac{Z}{A} \cdot \frac{z^2}{\beta^2} \left(\ln\left(\frac{2m_e c^2 \gamma^2 \beta^2}{I}\right) - \beta^2 - \frac{\delta}{2} \right)$$

 \blacktriangleright Nuclear field slows down particles \rightarrow Emission of photons: Bremsstrahlung

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \left(4\alpha N_A \frac{e^2}{4\pi\epsilon_0} \frac{1}{c^2}\right) \cdot \frac{Z^2}{A} \ln\left(\frac{183}{Z^{1/3}}\right) \cdot \frac{z^2 E}{m^2} \stackrel{\mathrm{Elektrons}}{=} \frac{E}{X_0} \Rightarrow E = E_0 e^{-\frac{x}{X_0}}$$

- Energy loss should be little $\Rightarrow X_0$ large
- Bremsstrahlung relevant above "critical" energy

tracking devices contribution

$$\sigma_{\rho}^{\times} = \sqrt{\left(\frac{r_2}{r_2 - r_1}\sigma_1\right)^2 + \left(\frac{r_1}{r_2 - r_1}\sigma_2\right)^2}$$

multiple scattering contribution

$$\sigma_p^{ms} = \frac{r_1}{\sin^{3/2}(\phi)} \frac{13.6 \text{MeV}}{c\beta p} z \sqrt{\frac{x}{\chi_0}}$$

total resolution

$$\sigma_p = \sqrt{(\sigma_p^x)^2 + (\sigma_p^{ms})^2}$$