MODERNIZING THE MONITORING OF MASS-STORAGE SYSTEMS

Alexandre Terrien
August 11th 2016

CERN IT-ST-FDO
Why do we need storage?

No data, no analysis. No analysis, no papers. No papers, no CERN.

Experiments produced 10PB of data in July.

Need to develop storage solutions:

- Tape and disk, started late 90’s
- Pure disk, started in 2010

Both still used in every experiment.

Need to work correctly.

Focus on CASTOR and its monitoring: log messages.
LOG MESSAGES
What is a log message?

Produced during relevant steps of the program execution:

- Startup/shutdown
- Request received (from an user)
- End of processing
- Error

10 million messages per day

Line of formatted text. Example:

```
2016-07-21T16:30:43.172316+02:00 lxc2dev7.cern.ch nsd[18479]:
LVL=Info TID=18530 MSG="Processing complete" REQID=54
d41ca0-8f13-4dba-a966-1ef771d742f4 Function="closedir"
Username="aterrien" Uid=93615 Gid=1028 Secure="No"
ClientHost="lxc2dev7.cern.ch" Cwd="" Path="/" Guid=""
RtnCode=0 ProcessingTime=0.049
```

Gives info on what, when, where, who

Modernizing the monitoring of Mass-storage systems

Alexandre Terrien
What do we do with log messages?

- Know when something goes wrong
- Debug
 - History of a file
 - History of a request
- Statistics: performance of system
- Data mining: analysis of trends
- Backups: long-term storage
PROJECT PRESENTATION
Figure 1: Old structure of the log message handling
Replace most of our log management code.

- Use IT central services
- More adequate tools
- Better performances
- No single point of failure
- Less maintenance for us

Log messages...

- production
- routing
- aggregation
Results
Log message production and routing

Format log messages to a homogeneous format. Regroup them on a single machine.

Before

Production:
- `simple-log-producer`
 - Plugin-based
 - Self-maintained

Routing: `Message Broker`
- Better solutions now

After

Flume for everything
- Apache project
- Supported by **IT-MM** team (not us !)
- Only have to maintain config files
Debug: storing into HBase

Know what happened to a file, a request
Filter messages, then write them into HBase
Independent messages: parallelization

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBase-consumer</td>
<td>Apache Spark script</td>
</tr>
<tr>
<td>• Self-maintained</td>
<td>• Apache project</td>
</tr>
<tr>
<td>• Runs on one machine</td>
<td>• Uses Hadoop cluster</td>
</tr>
<tr>
<td>• Everything done “By hand”</td>
<td>• Describe high-level operations</td>
</tr>
</tbody>
</table>
• Get info on the performances of the system
• Count, do statistics on some messages
• Filter, then regroup, then compute (MapReduce model)
• Apache Spark once again, for the same reasons
• Replaced tool named Metrics Analysis Engine
 • \(\approx\) 3k lines of code
 • Lots of unused, complex code
 • Very CPU intensive on one machine
LONG-TERM STORAGE

Store log messages to **HDFS** to recover in case of failure

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadoop-consumer</td>
<td>IT-MM team’s flume agent</td>
</tr>
<tr>
<td>• Self-maintained</td>
<td>• They do it “for free”</td>
</tr>
<tr>
<td>• Was actually working</td>
<td>• Nothing to do on our side</td>
</tr>
<tr>
<td>fairly well</td>
<td></td>
</tr>
</tbody>
</table>

Modernizing the monitoring of Mass-storage systems

Alexandre Terrien
Conclusion

- Replaced a lot of aging code
- IT central services
- Use of purpose-built tools
Thank you!
Backup slides
Hierarchical storage system

- Disk and magnetic tape
- Different access protocols
- No replication
Apache Spark

- MapReduce framework
- Python, Java, Scala, R
- High-level applications

Example code:

```python
text_file = spark.textFile("hdfs://...")
text_file.flatMap(lambda line: line.split())
    .map(lambda word: (word, 1))
    .reduceByKey(lambda a, b: a+b)
```
Database built on top of Hadoop

- Distributed
- "Horizontally" scalable
- Non-relational

Picture a big Excel spreadsheet

Use for CASTOR logs:
- One row: one file/request
- One column: one timestamp
- Associated cell: one log message