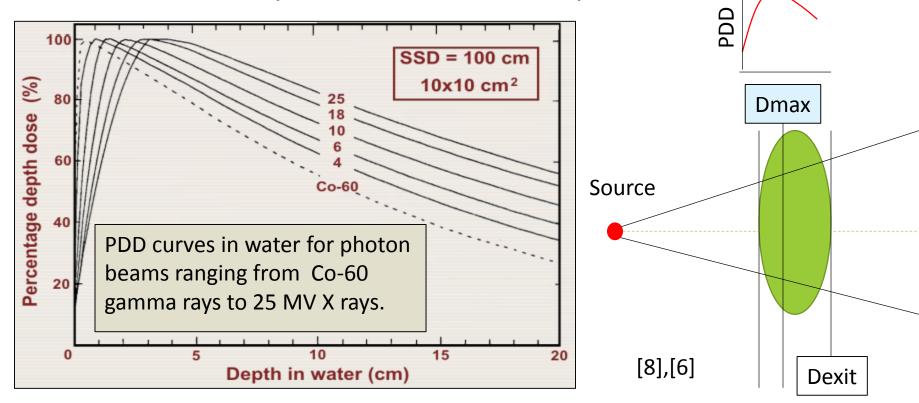

Treatment, Not Terror

Miles A. Pomper Senior Fellow James Martin Center for Nonproliferation Studies


Cancer Treatment: External Radiation

- Teletherapy machines that employ Co-60 sources can treat cancer
- In high-income states, teletherapy machines have been replaced with LINACs
 - Can Provide Better Treatment
- LINAC use less widespread in developing states because of higher costs, complexity and need for stable power sources
 - Use of LINACS varies directly with GDP/capita
 - Widespread use HMIC, medium LMIC, less LMIC

Factors Effecting Effectiveness External Beam Radiotherapy Technologies

- Goal: provide precise, well defined dose
- Depth dose depends energy (see figure)
- Depth is expressed in terms of PDD (Percentage Depth Dose)
 dose at various depths normalized to the peak dose

Factors affecting the Quality of Treatment for Co-60 vs LINAC

Aspect	Cobalt-60 (88)	LINAC (189)
Buildup (Zmax)	0.5 cm	1.5 (6 MV), 3.5 cm (18 MV)
Skin Dose	50%	25% (6 MV), 15%- 25% (18 MV)
Penetration @ 10 cm	54%	67% (6 MV), 77% (18 MeV)
Penumbra	90%-10% is 1.5 cm	Sharp beam field
Isodose Contours	Rounded	Flattened by filter
Energy	Low (1.25 MV)	High (>6 MV)

Source: Adapted from R. Ravichandran, "Has the Time Come for Doing Away With Cobalt-60 Teletherapy for Cancer Treatments" *Journal of Medical Physics* Vol. 34, No. 2, 2009, p. 63

Practical Differences Between Machines

Aspect	Cobalt-60	LINAC
Maintenance	Replaced every 5-7 years (5.27 Yr Half Life)	Frequent quality
		assurance necessary
Safety	Leakage radiation when beam is off is	Labor intensive quality
	<pre>significant = 0.01 mSv/hr; exposure varies</pre>	assurance procedures
	as the source is rotated into place and	
	needs to be taken into account	
Security	Sources need to be transported to be	No radioactive source
	disposed of; constant security risk requiring	used; no terrorism risk;
	around-the-clock security; terrorism risk.	however, will need to be
		guarded
Staffing	Easier to perform quality assurance and to	Requires more training
	operate the machine	
Cost	Cobalt-60 much less expensive than	Ongoing maintenance is
	LINACs. However similar when IMRT/MLC's	expensive
	are added	

MAKING LINACS MORE ACCESSIBLE TO LOW AND MIDDLE INCOME COUNTRIES

Develop LINACs for Challenging Environments

- Ability to function despite regular interruptions to power supply and air temperature control
- Highly modular, so that parts are easily exchanged
- Self-diagnosing, in case machine becomes nonfunctional
- Achievable through cooperation with diverse parties such as NASA, Silicon Valley, and India (which already has developed some models)
- Fund a global competition, similar to the XPRIZE, to design a better LINAC

Encourage Bulk Purchases

- Bulk purchases could drive down costs by 16-23%
- A regional group of countries could jointly purchase many machines for a lower cost and cooperate with manufacturers to support training of health personnel
- Versions of this idea have already been started in South Africa and Brazil

Vendors Lease Equipment

- LMICs currently encounter maintenance challenges as well as problems with disposal
- Leasing model would address the financial and operational challenges LMICs face
- Purchasers provide assurance of payment for disposal through bonds or escrow arrangements
- Vendors required to provide service for machines in a timely manner and take back disused equipment

Explore New Funding Sources

- Broad range of public and private stakeholders should fill funding gap
 - Governments, international development banks, private foundations, financiers, nongovernmental organizations
- Explore new financing mechanisms
 - Potential Models: Airline taxes, debt forgiveness, long-term purchase commitments by governments for vaccines, diaspora and social-impact banks, and development-bank guarantees
- WHO, IFIs (World Bank) should direct more funding to treatment, not just prevention

Study Improvement in Training and Education

- Currently, most guidelines are written for developed countries
- Establish regional centers of excellence to train oncologists and related health workers locally
- Offer online cancer training and education to healthcare professionals. Could be done in coordination with radiotherapy machine manufacturers.
- Train health workers to perform minor surgical procedures to alleviate shortage of physicians.
- Could also train individuals to repair radiotherapy equipment.

Use Better Screening to Improve Radiotherapy Treatment in Africa (LMICs)

- Survival rates for many cancers are lower for Africans than developed countries.
- This is because cancer is usually not detected and diagnosed until much later in the disease in Africa.
- Could use new technology to improve screening process.
- Would reduce need for radiation treatment and improve survival rates.

Need for IAEA Action

- IAEA PACT and Nuclear Security should include "Security Objectives" as well as "Cancer Care Objectives" in order to address both challenges and support LINACs
- Need for DG to bring together various IAEA offices or divisions to come up with a unified program to deal with replacing sources, safe and secure disposal, and support for development and/or transfer of alternate technologies to LMICs

Proposed:

Cancer Care/Risk Reduction Initiative

- Appropriate LINACS and servicing for LMICs
- Maximum Safety and Security
- Concerted plan for IAEA, to decommission, repatriate, and store/reprocess safely and securely all existing cobalt and other spent/disused sources in LIMIC cancer centers
- Helps meet Sustainable Development Goals
- Assist any participating country to acquire a LINAC for each Co-60 machine decommissioned and use it safely and securely

Required:

Cancer Care/Risk Reduction Initiative

- Appropriate LINAC designs
- Initial funding from existing IAEA and donor funds (TC, PACT, Nuclear Security Fund, etc)
 - For sustainability seek additional funds including nonstate funds
- Increased internal coordination within IAEA
 - Most programs are already operational and adequately budgeted
 - Some small program adjustments may be required