### CHALLENGES IN INTRODUCING NEW TECHNOLOGY IN THE DEVELOPING WORLD

Andras Fehervary Vice President, EMEIA Government Affairs Varian Medical Systems International

#### Geneva, 8 November 2016





## Summary

- 1. LMICs face additional challenges to provide RT vs developed countries (DCs), related also to missing key elements of the RT ecosystem.
- Past 10 years of evolutionary improvements in LINAC design & SW have addressed <u>at least in part</u> many LMIC issues – with developed countries also benefiting.
- 3. Anticipated HW/SW advances can further benefit LMICs but will further evolutionary LINAC HW changes significantly impact product costs?
- Recent experience suggests other factors more important than LINAC cost/complexity as limiting factors to proliferate RT delivery in LMICs not least FINANCING.
- Recent experience in Africa and India suggest (1) comprehensive & phased RT cancer plans; (2) systematic approaches to addressing all elements of delivering RT and (3) innovation in financing, market access & partnerships – can also improve RT access/uptake in LMICs.



### LINAC Operations What are additional challenges LMICs face?

- Inconsistent power availability; overall power consumption
- Operation in non-constant temperature, high humidity/dust environments
- High duty cycle, high patient throughput
- Staff with (relatively) limited skills
- Bunker size/design

VARIAN ONCOLOGY SYSTEMS

- Reliability requirements
- Supply chain and logistics secured for spare parts; and access to service.



- "Design for Serviceability"
- "Design for Learnability"
- "Design for 'Installability'"

What other obstacles do they face? How can they be overcome?

### Source: Varian analysis.



# What are the (increasingly well-known) challenges to better RT access in LMICs?

- (Sustainable) Financing: lack of financing for NCDs the 'elephant in the room'
- Human resources: a gap of 7,500 oncologists, 6,000 physicists and 20,000 technicians in LMICs (Africa: 1600 medical oncologists, 1000 medical physicists and 4000 technicians)
- **Market Access**: lack of installed base capacity; highly variable ability to pay between countries & population segments
- **Ecosystem**: lack of self-reinforcing enabling conditions (Finance/ Human resources / service/energy/infrastructure)
- Health coverage: lack of universal coverage or critical density of private insurance
- Other: legal; regulatory, bureaucratic and other obstacles

VARIAN ONCOLOGY SYSTEMS

GTFRCC provides a compelling case to address the gap – but how to make it happen?



## Lancet Commission Calls to Action

### Action 1: population-based cancer control plans

• Target: by 2020, 80% of the countries to have cancer plans that include radiotherapy.

### Action 2: expansion of access to radiotherapy

 Targets: at least one cancer center in each LMIC by 2020; 25% increase in radiotherapy treatment capacity by 2025.

#### **Action 3: Human resources for radiotherapy**

 Target: 7500 radiation oncologists, 20 000 radiation technologists, and 6000 medical physicists to be trained in LMICs by 2025.

### Action 4: sustainable financing to expand access to radiotherapy

• Target: \$46 billion of investment by 2025 to establish radiotherapy infrastructure and training in LMIC countries.

### Action 5: align radiotherapy access with universal health coverage

• Target: 80% of low-income and middle-income countries to include radiotherapy services as part of their universal health coverage by 2020.

#### THE LANCET Oncology

## Foreign aid to NCDs in 2014



Source: University of Washington Institute for Health Metrics and Evaluation



### Learnings What have we learned via recent practice?





### Learnings Ecosystem – Immediate RT center environment



Clarity on provision of all elements

- 1. **Providing Modern Equipment** Full turnkey supply including the treatment equipment, the patient management and treatment planning software, quality control.
- 2. Commissioning of Equipment & implementation support assist in sourcing resources to commission equipment.
- 3. Education & Training– Training of local clinical professionals and staff to fully qualified status needed to deliver quality radiation oncology treatment.
- 4. **Maintenance** A optimal performance regime and maintenance package to ensure full operational use.
- 5. **Building–** Support provision of facilities to accommodate a radiation oncology suite; all related elements
- 6. (Management and Operation) full set of point of care solutions (treatment planning, delivery & management, site specific operations management, site specific analytics, resource management),

## Learnings Education as a key Component

**French and English Educational "Hubs"** both linked to Varian's 'Låra Nåra' virtual education environment Examples:

Ghana

- Korle Bu Hospital
- Core Program

South Africa (Groote Schuur Hospital)

- 2D to 3DCRT Program
- 3DCRT to Dynamic Techniques Program

Algeria

- RTT Track
- Internship for Physicists

VARIAN ONCOLOGY SYSTEMS

SRS/SRT Implementation Program







stems, the University of Cape Town and the



### Learnings - Benefits of Scale & Planning Algeria Cancer Program



# PLAN NATIONAL 2015 CANCER 2019

13 new governmental centers39 linear accelerators





**Equipping Public Hospitals** 



## Learnings - Benefits of Scale & Planning Organization of care - Hub & Spoke Model + HIT



VARIAN ONCOLOGY SYSTEMS

Aligned with key cancer policy objectives & best practices:

- Phased expansion of RT along a 'hub & spoke model" leveraging HIT / AI / distance & network solutions
- In line with social/eco objectives (BPL population, mixed payment models)
- Leverage new commercial models (PPP) to overcome capital constraints
- Can be accompanied by national knowledge reference network; national decision support platform; care management network (a.w.a. point of care solutions)



### Learnings – Financial Innovation PPP "light'/MES Model



## Learnings – Innovation in Access Kenyan Voucher Program





VARIAN ONCOLOGY SYSTEMS

- Public sector wait time: >18 months for over 1,400 patients
- Partnership between American Cancer Society, Kenyatta National Hospital & Nairobi Hospital, local NGO with Varian support
- Private treatment available at public rates (\$5/session patient copay; voucher

Bridge gap between private & public sectors – leverage unused RT capacity at lower cost



## Future of Cancer Care Technology for quality, efficiency, cost effectiveness



### **Further Leverage Knowledge**



# Further Efficiency & effectiveness

# Further improve cost effective care at international standards





## History of Reliability



# Average System Uptime



### Interdependence Together we can complete the puzzle ...



## OUR VISION A WORLD WITHOUT FEAR OF CANCER.



# VARJAN medical systems

# A partner for life



## Recent advances in RT technology Do they address all needs?

VARIAN ONCOLOGY SYSTEMS

| Issue/ hypothesis –<br>LMIC needs                     | Associated<br>characteristic                                    | Impact<br>LINAC<br>Cap cost | Benefits             | Examples                                                                          | Challenges / Opportunities                                                                                                                                                              |
|-------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower Capex cost                                      | Mature<br>technology may<br>limit production<br>cost reduction* | ?                           | LMICs ©<br>Others: © | Brazil 'winner take all'<br>tender 80 LINACs<br>TK large-scale PPP<br>projects    | Profitability LMICs<br>Multiple system purchase<br>commitment reduces risk<br>Evidence Capex cost is issue                                                                              |
| Higher reliability                                    | "Design for<br>Reliability"                                     | 8                           | LMICs ©<br>Others: © | Re-use of proven<br>component designs<br>across different LINAC<br>product lines. | Reliability of today's designs<br>benefited from long history /<br>relative stability of RT<br>technologies. High-reliability<br>components typically have<br>increased production cost |
| Lower power<br>consumption                            | Single/low energy systems                                       | ©                           | LMICs ©<br>Others: © | Offered by all manufacturers                                                      | LMIC association: quality<br>complexity                                                                                                                                                 |
| Robust against<br>Power availability<br>inconsistency | Prevent damage;<br>maximize uptime                              | 8                           | LMICs ©              | Battery backup to prevent hard shutdowns                                          | Backup generator power as<br>alternative<br>Local optimization UPS systems                                                                                                              |

VAR

N

## Recent advances in RT technology Do they address all needs?

| Issue/ hypothesis –<br>LMIC needs              | Associated characteristic                                               | Impact<br>LINAC<br>Cap cost | Benefits             | Examples                                                                                                      | Challenges / Opportunities                                                                                  |
|------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Robust Against<br>Temperature<br>variations    | Built in cooling of LINAC                                               | ⊜                           | LMICs ©<br>Others: © | High heat/humidity environments                                                                               | Remote diagnosis & analysis<br>Higher service requirements                                                  |
| High duty cycle,<br>high patient<br>throughput | Simplicity of<br>LINAC user<br>operation &<br>treatment<br>planning.    | Neutral                     | LMICs ©<br>Others: © | Decreases the number<br>of user interactions with<br>the system.<br>Knowledge-based<br>software products (AI) | Networks – centralized<br>treatment planning<br>High reliability → multiple shifts<br>→ lower /patient cost |
| Limited staff<br>knowledge/<br>resources       | "Design for<br>Learnability"<br>Increased<br>automation of<br>workflows | neutral                     | LMICs ©<br>Others: © | . Automation of well-<br>established workflows                                                                | Learnability helps addresses<br>the challenges of staff turnover.                                           |
| Serviceability                                 | "Design for<br>Serviceability"                                          | Marginal                    | LMICs ©<br>Others: © | Remote diagnostics.<br>Predictive analytics.                                                                  | Reliable internet connection<br>Maturity of technology                                                      |

