

Solid State Physics Program

Juliana Schell^{1,2} Doru C. Lupascu²

on behalf of the SSP Community

¹CERN, Geneva, Switzerland

² Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Germany

ISOLDE Workshop and Users meeting 2016

UNIVERSITÄT DUISBURG ESSEN

Nuclear Solid State Physics "Birth"

1959

J. Gróh and G. V. Hevesy Annalen der Physik 1920 vol 368, issue 17, pages 85-92 "Die Selbstdiffusionsgeschwindigkei des geschmolzenen Bleis"

> 4. Die Selbstdiffusionsgeschwindigkeit des geschmolzenen Bleis; von J. Gróh und G. v. Hevesy.

Der Begriff der Selbstdiffusion entstammt James Clark Maxwell.⁴) Er ergibt sich unmittelbar, sobald man die Diffusion als Ergebnis der Molekularbewegung betrachtet. Nimmt man z. B. einen mit Stickstoff gleichmäßig gefüllten Zylinder und bezeichnet die in einem Zeitpunkte an einem Ende des Zylinders befindlichen Moleküle rein fiktiv, d. h. ohne dabei ihre Masse und Radien zu beeinflussen, so kann man die Selbstdiffusion des Stickstoffs ähnlich verfolgen, wie man etwa die Diffusion des Stickstoffs in Sauerstoff mißt.

H. Haas "First results are described in the HMI-AR/1976. First conference contribution: HFI-IV in Madison (1977): ⁷⁹Kr/Zn,Cd,Sb. R.L. Mössbauer
Zeitschrift für Naturforschung 1959 vol 14a, pages 211-216
"Kernresonanzabsorption von γ-Strahlung in Ir¹⁹¹"

ISOLDE Workshop and Users meeting 2016 by Juliana Schell

2

Diffusion Thermal motion of particles

PL Optical and electronic properties

ASPIC Versatile system to study surfaces and interfaces

DLTS

Study concentration of electrically active defects /analyze the content of deep level defects in the material

Techniques 1976-1991

PAC

EFG and BHF, charge symmetry from 10 to 1500 K

...and much more!

Hall effect, capacityvoltage, electrical conductivity, paramagnetic resonance spectroscopy

MS

EFG and BHF, charge symmetry, binding properties **EC** Lattice location

ISOLDE Workshop and Users meeting 2016 by Juliana Schell

3

SSP infraestructure

SSP infraestructure

Upgrades

Status monitor eam exit valve Fore pump Fore pump

The load-lock implantation chamber. The left side of the chamber is the permanently evacuated implantation part while the right section can be vented for sample changing.

The new implantation chamber at the GLM branch BMBF Universität Göttingen Nagl, Vetter, Hofsäss Poster: Christoph Pohl

Perturbed Angular Correlations with Short-Lived Isotopes, the PAC-SLI setup Poster: Abel Fenta & Manuel Silva

Emission Channeling with Timepix position sensitive dectectors Poster: David Bosne

Upgrades: chemical lab

SSP infraestructure

Mössbauer Collaboration ISOLDE, BMBF, KU-Leuven, Mössbauer Collaboration

e-g PAC Collaboration ISOLDE, BMBF, FCT

SSP infraestructure

Gamma Spectrometry Collaboration ISOLDE, BMBF

PL and offline diffusion Collaboration ISOLDE, BMBF

SSP in the ISOLDE hall

On-line diffusion chamber Courtesy: M. Deicher

People working with diffusion at ISOLDE in 2016

eMS at ISOLDE Courtesy: H. P. Gunnlaugsson

Why Mössbauer at ISOLDE?

Valence state

Site symmetry/ interstitial/substitutional

Always two elements that play role: ⁵⁷Fe

Parent (⁵⁷Mn, 1.5 min) \rightarrow daughter (⁵⁷Fe, 100 ns) Parent (⁵⁷Co, 272 d) \rightarrow daughter (⁵⁷Fe, 100 ns) ¹¹⁹Sn

Parent (¹¹⁹In, 2.1 min) \rightarrow daughter (^{119*}Sn, 18 ns)

Distinguish ferro/para(magnetism)

Binding properties (through Debye Waller factor)

eMS: can measure low local concentrations (~10⁻⁴ at.%)

At ISOLDE/CERN we can measure spectrum in few minutes

ISOLDE Workshop and Users meeting 2016 by Juliana Schell

17

On-line setup: ⁵⁷Mn (1.5 min) ¹¹⁹In (2.1 min)

Measurement Conditions

Quencl

14.3

- Implantation/measurement at T >
- Sample quickly removed from vacu
- External measurement started (whi
 - Quenching: sample dropped in LN
 - External magnetic field
 - ➤ Laser illumination
 - ▶
- First tested 2014 with moderate suc success, used in 2016 with huge suc

ISOLDE Workshop and Users meeting 2016 by Juliana Schell

20

General Observations/methods

- Temperature series:
 - ➤ Implantation damage at low T's
 - Incorporation on regular lattice sites at high T's
 - Defect-probe complexes at intermediate T's
- Angular dependent measurements
 - > "Damage" without angular dependence
 - "Crystalline sites" with angular dependence (if not cubic material)

⁵⁷Mn implanted TiO₂

- Slight, but significant angular dependence
 - Not Fe in amorphous zones

Cold Source/absorber eMS

- Hg produced from spallation in a molten Pb target
- ¹⁹⁷Hg/¹⁹⁷Au (PAC) implanted into ice
- Biomolecules prepared and sample frozen

Isotopes used (since 2000)

MS Isot.	Parent	Lifetime	Recoil	Det.	Target/ion source	Yields (s- ¹)
⁵⁷ Fe	⁵⁷ Mn (β)	1.5 min.	M:93 eV	Res.	UCx/RILIS	$few \times 10^8$
	⁵⁷ Co (EC)	272 d.	0.14 eV	Res.	ZrO/VADIS	~107
119 Sn	¹¹⁹ In (β)	2.1 min.	M:22 eV	Res.	UCx/RILIS	~109
	^{119m} Sn (IT)	291 d.	~0 eV	Res.	UCx/RILIS	~10 ⁹ (?)
	¹¹⁹ Ag (β) \rightarrow ¹¹⁹ Cd (β) \rightarrow ¹¹⁹ In (β)	2.1 s. 2.2 min. 2.4 min.	M:102 eV	Res.	UCx/RILIS	~few×10 ⁷
¹⁹⁷ Au	¹⁹⁷ Hg (EC)	64 h.	~0	Ge (LT)	Pb	~109
¹⁵¹ Eu	151 Dy (EC) \rightarrow^{151} Tb (EC) \rightarrow^{151} Gd (EC)	17.9 min. 17.6 h. 123.9 d.	~0	Ge	Та	~109

Perturbed Angular Correlations by J. Schell & G. Correia

PAC: a method to probe hyperfine interaction in matter

Strengths

- Sample's morphology is very flexible: Solids, liquids, molecules...
- Efficiency is almost independent of temperature
- Its a differential time measurement ranging from ns to µs

Weaknesses

Needs radioactive nuclei with:

- suitable decay cascades, nuclear moments, half-lives
- *"complicated"* analyzing software
- interpretation is not direct

Opportunities

- Facilities like ISOLDE provide many "new" PAC probes
- Synchrotron radiation can make available more probe elements
- New DFT and Cluster models offer great progresses on interpretation
- New detection methods offer greater efficiency and handling of data (LaBr3 detectors, digital)
- e-gamma, gamma-gamma and beta-gamma should be exploited TOGETHER providing new data and exciting new physics

Threats

- Access to large scale facilities depends on appropriate funding
- Training and know-how (in applied nuclear physics) is vanishing from educational programs
- Traditional European groups are disappearing where deep knowledge of the method was accompanied by a regular production of good work.

ISOLDE Workshop and Users meeting 2016 by Juliana Schell

26

Why only conventional PAC ISOTOPES?

	Q (b)	μ (μ _N)	\mathbf{A}_{22}	Ι
^{111m} Cd	+0.765(15) (*)	-0.766(3)	0.1786	5/2+
¹⁸¹ Hf (**)	+2.35(6)	+3.29(3)	-0.3185(11)	5/2+
	+2.16(37)	+0.669(16)	-0.392(8)	2+

(*)Haas, H. and Correia J. G., Hyp. Int. 198, 133-137, 2010.

(**)Singh, B., Nuclear Data Sheets, 199 & Tuli J.K., Academic Press Inc., 1995.

Probe elements

Available at ISOLDE

NOT available at ISOLDE

PAC RESULTS: dopant incorporation (Cd)

Apparatus for surface Physics at ISOLDE CERN (1991)

Apparatus for Surface Physics and Interfaces at CERN (2003)

(ASPIC)

Apparatus for Surface Physics and Interfaces at CERN

CERN-ISC-91-10

³¹ **ISOLDE Workshop and Users meeting** 2016 by Juliana Schell

Offline and on-line emission channeling Courtesy: L. Pereira and U. Wahl

³² **ISOLDE Workshop and Users meeting** 2016 by Juliana Schell

Lattice sites of ²⁷Mg in different pre-doped GaN (IS453 courtesy)

Interstitial ²⁷Mg ($t_{1,2}$ =9.5 min) in GaN of different doping types

Nature Physics **8**, 800 (2012) Phys. Rev. Lett. **112**, 186801 (2014) *Nature Materials* **13**, 178 (2014) *Nature Communications* **3**, 982 (2012)

³⁴ **ISOLDE Workshop and Users meeting** 2016 by Juliana Schell

Rhombohedral distortion: breaking crystal mirror symmetry

...with hyperfine interactions (IS612 courtesy)

EC-SLI (IS580) Emission Channeling with Short-Lived Isotopes (online)

Successful emission channeling measurements on topological insulators

example spectra: Mn-doped PbTe, implanted at 100 °C

⁵⁶Mn (2.6 h)

- Mn as magnetic dopant <111>
- magnetic properties depend on Mn lattice site (e.g. substitutional versus intersitital)
- EC is used to determine the lattice location

-2 -1 0

example spectra:

Sn-doped PbTe, implanted at 200 °C

1

-3

¹²³Sn (40 min)

parent: ¹²³In

1.21

•

- isotope used for first time for EC
- ^{1.16} doping with Sn induces a rhombohedral distortion; the topological state
 (e.g. topological insulator, Rashba
 semiconductor, or trivial) depends on the
 ^{0.94} magnitude of this distortion
 - EC is used to characterize the distortion

³⁷ **ISOLDE Workshop and Users meeting** 2016 by Juliana Schell

<211>

"For the greatest benefit to mankind"

2016 NOBEL PRIZE IN PHYSICS David J. Thouless F. Duncan M. Haldane J. Michael Kosterlitz

© Trinity Hall, Cambridge University. Photo: Kiloran Howard David J. Thouless Prize share: 1/2

Photo: Princeton University, Comms. Office, D. Applewhite **F. Duncan M.** Haldane Prize share: 1/4

III: N. Elmehed. © Nobel Media 2016 J. Michael Kosterlitz Prize share: 1/4

"for theoretical discoveries of topological phase transitions and topological phases of matter" Source: "The Nobel Prize in Physics 2016". *Nobelprize.org*. Nobel Media AB 2014. Web. 4 Dec 2016. http://www.nobelprize.org/nobel_prizes/physics/laureates/2016/

³⁸ **ISOLDE Workshop and Users meeting** 2016 by Juliana Schell

Acknowledgements

BMBF

Bundesministerium für Bildung und Forschung

Erforschung kondensierter Materie mit Großgeräten Ausbau und Unterhalt der Einrichtungen an ISOLDE/CERN Germany, contracts: 05K13TSA, 05K16PGA M. Deicher, D. Lupascu, J. Schell

Federal Ministry of Education and Research

FCT

Fundação para a Ciência e a Tecnologia

Caracterização de Materiais com Técnicas Nucleares Radioativas sinergia e complementaridade aplicadas ao treino e desenvolvimento.

Portugal, Project: CERN-FIS-NUC-0004-2015 J.G. Martins Correia

KU-Leuven Katholieke Universiteit Leuven Lino Pereira

ISOLDE Workshop and Users meeting 2016 by Juliana Schell

39

Thank you very much for your attention! ... to colleagues and collaborators!

Specially the SSP in-house group!

⁴⁰ **ISOLDE Workshop and Users meeting** 2016 by Juliana Schell