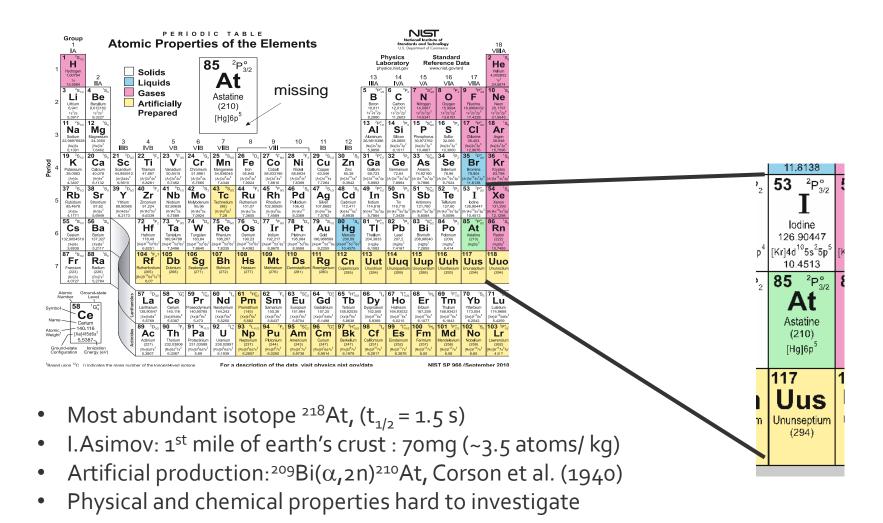
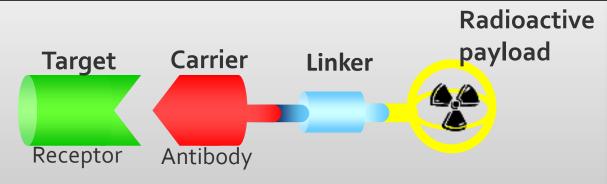
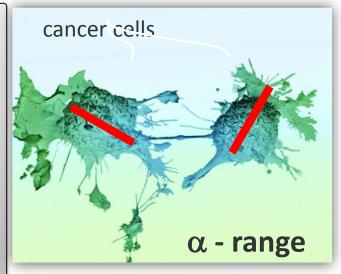
First photodetachment studies on radioactive negative ions


Towards the electron affinity measurement of astatine

S.Rothe for the I-148 Collaboration


The rarest element on Earth: Astatine

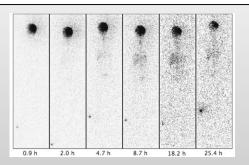

Astatine for targeted alpha therapy (TAT)

Immunology
Structural biology

Coordination chemistry

Nuclear physics and radiochemistry

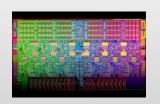
- Cancer cells have specific receptors
- Can be targeted by antibodies which carry radionuclides
- Alpha particles have ideal range to kill individual cancer cells
- Astatine is a good candidate for TAT (half life, α -energy)
- But At behaves sometimes like a metalloid sometimes like halogen a **chemical hybrid**


A zorse (zebra-horse hybrid)

With material from *U.Köster, INPC 2013*

Astatine biochemistry studies

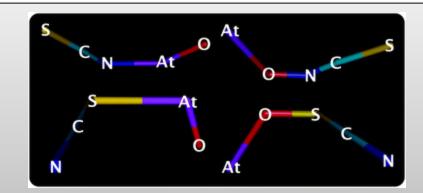
73 MBq 211At-ch81C6 **in vivo** γ ray image of full body *M. Zalutsky et al., J. Nucl. Med. 49 (2008) 30.*


 Slow process due to absence of a long lived tracer

in vitro

S.H. Cunningham et al., Br. J. Cancer 77 (1998) 2061.

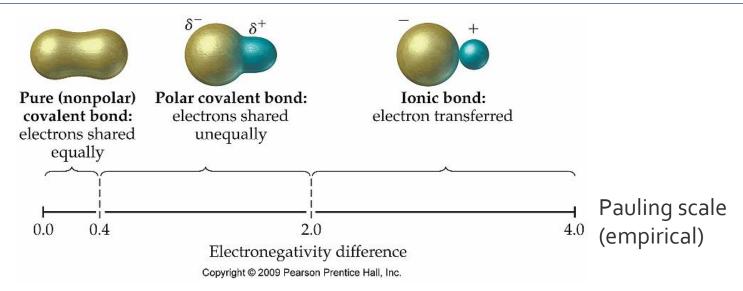
S.H.L. Frost et al., Cancer 116 (2010) 1101.


J. Champion et al., J. Chem. Phys. A114 (2010) 576.

in silico

J. Champion et al., PCCP 13 (2011) 14984.

- 'In silico' calculations can predict behavior of compounds before synthesis
- Needs experimental references: such as the IP and EA



With material from *U.Köster*, *INPC 201*3

Electronegativity

- Electron Affinity (EA)
 - = Binding energy of the negative ion
- Ionization Potential
 - = Binding energy of the positive ion
- IP + EA determine the chemical reactivity type of chemical bonds.

08/12/2016

Mulliken electronegativity scale

$$X^M = \frac{IP + EA}{2}$$

Can be connected to Pauling scale:

DOI: 10.1021/ct049942a

Contents

- Measurement of the IP(At)
- 9 Measurement of the EA of radiogenic iodine
- First results for astatine

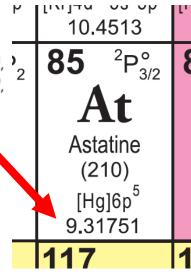
The ionization potential of astatine

ARTICLE

Received 21 Aug 2012 | Accepted 27 Mar 2013 | Published 14 May 2013

DOI: 10.1038/ncomms2819

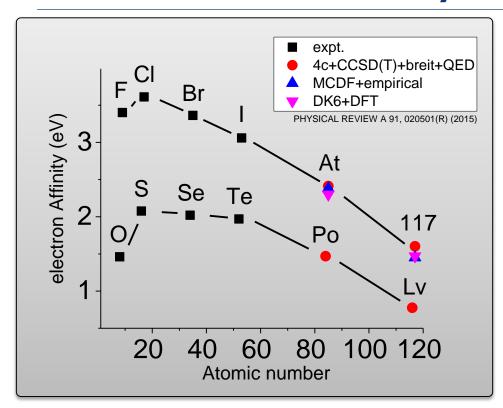
OPEN


Measurement of the first ionization potential of astatine by laser ionization spectroscopy

S. Rothe^{1,2}, A.N. Andreyev^{3,4,5,6}, S. Antalic⁷, A. Borschevsky^{8,9}, L. Capponi^{4,5}, T.E. Cocolios¹, H. De Witte¹⁰, E. Eliav¹¹, D.V. Fedorov¹², V.N. Fedosseev¹, D.A. Fink^{1,13}, S. Fritzsche^{14,15,†}, L. Ghys^{10,16}, M. Huyse¹⁰, N. Imai^{1,17}, U. Kaldor¹¹, Yuri Kudryavtsev¹⁰, U. Köster¹⁸, J.F.W. Lane^{4,5}, J. Lassen¹⁹, V. Liberati^{4,5}, K.M. Lynch^{1,20}, B.A. Marsh¹, X. Nishio⁶, D. Pauwels¹⁶, V. Pershina¹⁴, L. Popescu¹⁶, T.J. Procter²⁰, D. Radulov¹⁰, S. Raeder^{2,19}, M.M. Rajabali¹⁰,

E. Rapisarda¹⁰, R.E. Rossel², K. Sandhu^{4,5}, M.D. Seliverstov^{1,4,5,12,10}, A.M. Sjödin¹, P. Van den Bergh¹⁰,

P. Van Duppen¹⁰, M. Venhart²¹, Y. Wakabayashi⁶ & K.D.A. Wendt²


IP(At) = 9.31751(8) eV

The electron affinity of astatine

- No experimental value for EA(At) yet
- Scattering of all theoretical predictions and extrapolations ~1 eV

08/12/2016

Letter of Intent INTC-I-148

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Preparation of negative ion beams for the determination of the electron affinity of polonium and astatine by laser photodetachment

25.09.2013

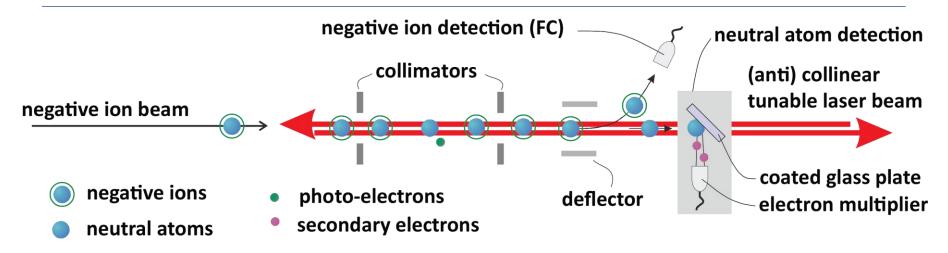
S. Rothe¹, M. Bissell², T. Day Goodacre^{1,3}, V. Fedosseev¹, K. Flanagan³, N. Galland⁴, T. Giles¹, A. Gottberg¹, D. Hanstorp⁵, U. Köster⁶, T. Kron⁷, Yu. Kudryavtsev², B. Marsh¹, G. Montavon⁸, G. Neyens², S. Raeder², E. Renault⁴, R. Rossel^{1,9}, M. Stachura¹, T. Stora¹, K. Wendt⁷

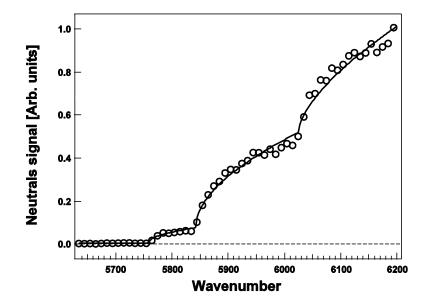
Proposal INTC-P-462

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

(Following ISOLDE Letter of Intent I-148)

Determination of the electron affinity of a statine and polonium by laser photodetachment


January 12, 2016

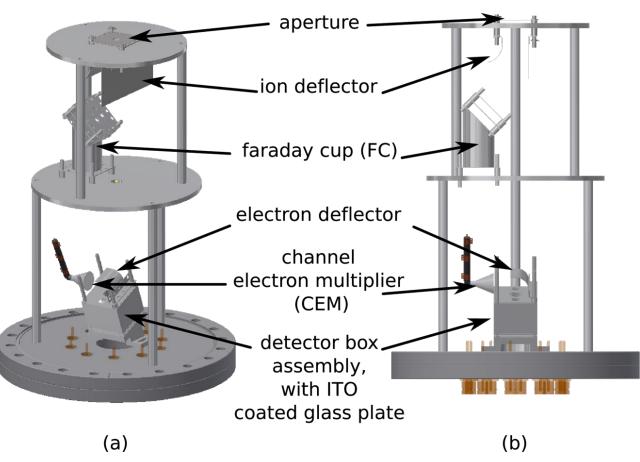

S. Rothe^{1,2,3}, J. Champion⁴, K. Chrysalidis^{1,5}, T. Day Goodacre^{1,3}, V. Fedosseev¹,
 N. Galland⁶, D. Hanstorp², R. Heinke⁵, U. Köster⁷, T. Kron⁵, Y. Liu⁸, B. Marsh¹,
 G. Montavon⁴, E. Renault⁶, A. Ringwall-Moberg², R. Rossel⁵, C. Seiffert¹,
 J. Sundberg^{1,2}, J. Welander², and K. Wendt⁵

The Method: Collinear laser photodetachment

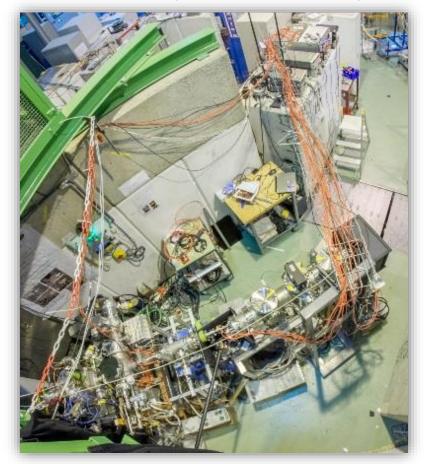
$$At^- + hv \rightarrow At + e^-$$

Wigner law:

$$\sigma = k (E-E_0)^{1+1/2}$$


l = o for s-wave outgoing electron

The neutral atom detector

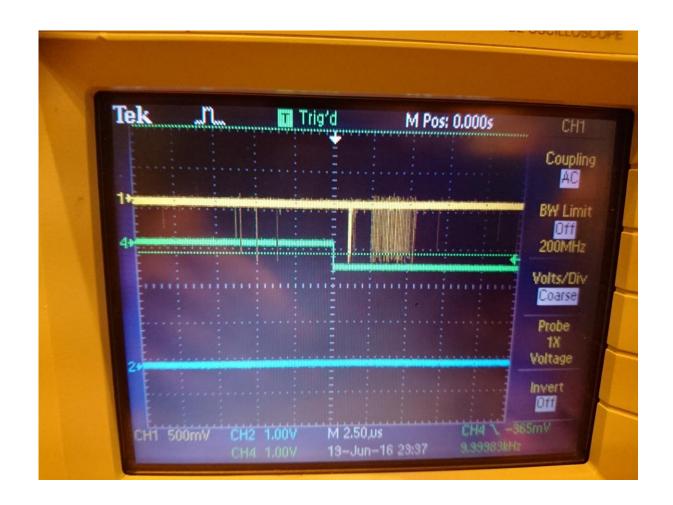


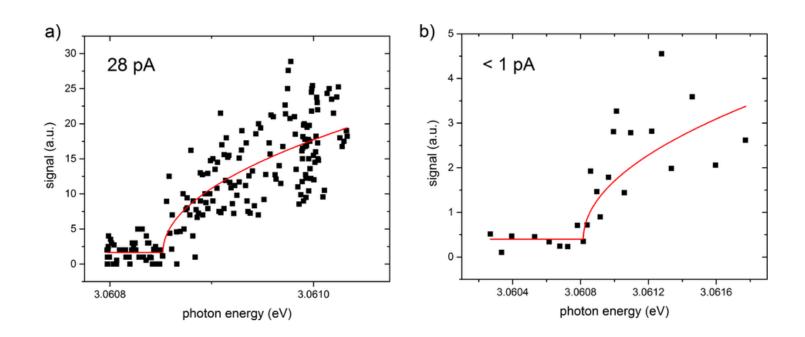
A new apparatus: GANDALPH 2015

Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment

- Built in spring 2015 in Gothenburg
- Moved to ISOLDE, June 2015

GANDALPH 2015




The signal

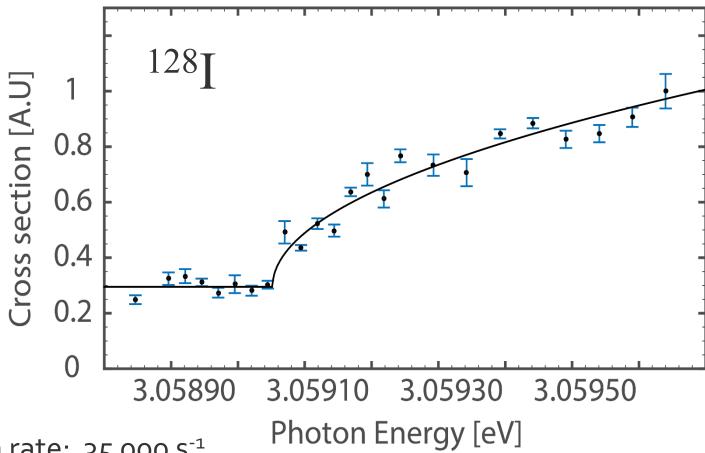
Results 2015: photodetachment of stable 127-iodine

First photodetachment signal of I⁻ at ISOLDE

- Threshold still measurable at very low ion rates (<1 pA, FC noise)
- No radiogenic iodine or astatine beams for LOI I-148

Upgraded GANDALPH 2016 vs 2015

	2015	2016
Baking	no	yes
Vacuum	2 X 10 ⁻⁸ mBar	<10 ⁻¹⁰ mBar
DAQ	Lecroy	SRS Photon Counter
Transmission	8%	25%
Frame	Bricolage	ITEM profiles



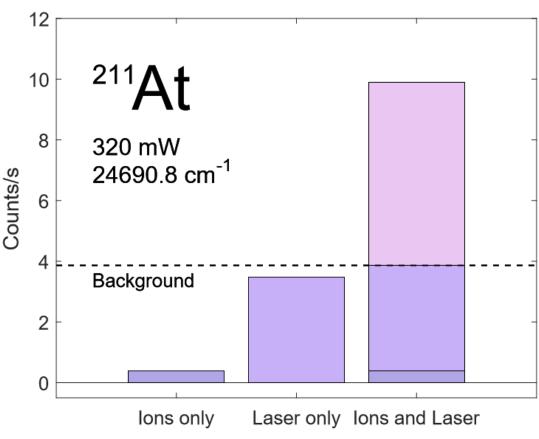
2016 – first affinity measurement on radioactive ions

• Ion rate: 35 000 s⁻¹

Measurement time: 39 min

Extracted EA: 3.059 052(38) eV

2016 - astatine yields


Mass	Signal (cps)	Background (cps)
204	2000	200
206	2500	170
208	1700	170
209	4000	150
210	4800	150
211	6200	170
212	about 800	170
213	170	170
217	170	170
218	170	170
219	170	170
204	2900	200

- 1.6uA p on target
- Signal = secondary electrons from ion beam on glass plate
- Increased background
- 211 At most intense beam

First photodetachment signal of astatine

- Ion rate $(^{211}At^{-})$: 6 200 s⁻¹
- Measurement time: ~1 h
- Upper limit for EA(At): < 3.06 eV

Conclusion

- GANDALPH has been upgraded better vacuum better ergonomics
- First electron affinity measurement on a radioactive ion performed
- First laser photodetachment of astatine negative ions achieved

Outlook: GANDALPH 201X

- Improved beam diagnostics
 - Dedicated ion detector for tuning
 - Segmented collimators
- Re-condition the ion pump
- Fix broken vacuum feed-troughs
- File a beam time request for P-462

Astatine EA team (2015)

I-148 Collaboration

Laser photodetachment of radioactive ¹²⁸I⁻

Sebastian Rothe^{1,2,3}, Julia Sundberg^{1,2}, Jakob Welander², Katerina Chrysalidis^{1,4}, Thomas Day Goodacre^{1,3}, Valentin Fedosseev¹, Oliver Forstner⁵, Reinhard Heinke⁴, Karl Johnston¹, Tobias Kron⁴, Ulli Köster⁶, Yuan Liu⁷, Bruce Marsh¹, Annie Ringvall-Moberg^{1,2}, Ralf Erik Rossel^{1,4}, Christoph Seiffert¹, Dominik Studer⁴, Klaus Wendt⁴, and Dag Hanstorp²

Submitted to J. Phys. G

¹ CERN, Geneva, Switzerland

² Department of Physics, Gothenburg University, Gothenburg, Sweden

³ School of Physics and Astronomy, The University of Manchester, Manchester, UK

⁴ Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany

⁵ Friedrich Schiller Universität, Jena, Germany

⁶ Institut Laue-Langevin (ILL), Grenoble, France

⁷ Physics Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, USA

Thanks

- Isolde technical team for intense ion source tests and swapping ISOLDE to negative mode
- ISOLDE experimental setups (CRIS, COLLAPS, ISOLTRAP, SSP, ...) for helping out with equipment especially for GANDALPH 1.0
- Vacuum group for assistance with baking of GANDALPH 2.0

/eof

