KU LEUVEN

High-resolution laser spectroscopy of ⁷⁶⁻⁷⁸Cu with CRIS

Ruben de Groote Nuclear Moments group IKS, KU Leuven

Outline

- Motivation: study of the magicity of ⁷⁸Ni
- Laser spectroscopy with CRIS
- Experimental results
 - Magnetic moments
 - Quadrupole moments
 - Charge radii
- Conclusions

Motivation: structure of neutron-rich Cu

Context: shell evolution

- Nucleon-nucleon interaction: single-particle energies evolve as function of nucleons in an orbit
- Away from stability, this can lead to (dis)appearance of shell closures
- Cu chain: Z=29: probe for the magicity of Z=28 and N=28,40,50

T. Otsuka et al, PRL **104**, 012501 (2010)

K.T. Flanagan et al, PRL 103, 142501, 2009

Moments of neutron-rich Cu (Z=29)

Magnetic moments: sensitive to details of wavefunction

- Theoretical reproduction: excitation across Z=28 required
- Moment confirms dominant πf_{5/2} contribution for ^{72,74}Cu

Moments of neutron-rich Cu (Z=29)

Quadrupole moments: collectivity and deformation

- Quadrupole moment is sensitive to E2 transitions
- Neutrons across N=50 (not included in jj44b/JUN45) not required up to A=75

Goals of our experiments

Perform laser spectroscopy on 76-78Cu

- Determine g-factors: probe excitations across Z=28
- Determine quadrupole moments: determine deformation; probe E2 collectivity
- Determine changes in mean-squared charge radii
- Determine nuclear spins

Determine feasibility of future experiments on ⁷⁹Cu

Laser spectroscopy with CRIS

Laser spectroscopy

Hyperfine interaction of nucleus and electrons

- Energy splitting μ, Q, I

$$W_F = \frac{1}{2}AC + B \frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)},$$

$$C = F(F+1) - I(I+1) - J(J+1).$$

Laser spectroscopy: probing these energy perturbations with lasers

Collinear resonance ionization spectroscopy

- Accelerated beam (30-60 keV) + collinear geometry: reduced doppler broadening
- Bunched beam from ISCOOL: match pulsed laser duty cycle
- UHV: suppression of unwanted collisional ionization
- MCP: efficient ion detection

Collinear resonance ion ation spectroscopy Bunched radioactive Deflector plates beam from ISOLDE 1.93 m 50 keV umped APIPS PIPS 30° bend atoms Deflected Quadrupole doublet The DSS Pulsed **MCP** laser beams Charge excha Collimator See inset Carbon foi Horizontal and vertical deflection plates The 'windmill' system Copper plate beam + collinear geometry: reduced doppler

- Med beam from ISCOOL: match pulsed laser duty cycle
- UHV: suppression of unwanted collisional ionization
- MCP: efficient ion detection

CRIS of copper

- Laser ionization scheme:
 249 nm + 314 nm
- Laser system: injection locked pulsed ti:sapphire laser (Jyvaskyla/Mainz) and pulsed dye laser
- High efficiency (total ε~1%)
- High resolution (70 MHz linewidth)
- High background suppression

Experimental results

Experimental spectra

- Data on ⁶³⁻⁷⁸Cu
- 80hrs total of data taking

Frequency detuning from centroid (MHz)

Spin assignments

Literature spins from previous laser spectroscopy

confirmed

- 78 Cu: I = 6??
 - Ratio of A: I>1
 - g-factor: I = 5,6,7
 - → We cannot make a spin assignment...

g-factors of even Cu isotopes

- Empirical g-factors confirm
 πf_{5/2}vg_{9/2} dominates the
 wavefunction for N>43
- Shell model calculations improve with increasing N
- Opening cross-shell excitation could improve reproduction

g-factors of even Cu isotopes

- Empirical g-factors confirm
 πf_{5/2}vg_{9/2} dominates the
 wavefunction for N>43
- Shell model calculations improve with increasing N
- Opening cross-shell excitation could improve reproduction
 - Recent calculations by Strasbourg group show promising agreement!

Quenching 0.75

v:
$$g_s = -2.8695$$
 $g_l = -0.1$

$$\pi$$
: $g_s = 4.1895$ $g_l = 1.1$

Q-moments of odd Cu isotopes

- Uncertainties on Qmoment of ⁷⁷Cu unfortunately too large to draw conclusions
- ⁷⁹Cu will be a key case for the future
- Interpretation of shell model calculations in progress

Charge radii

- King plot analysis: $M_k = 2296(23) \text{ GHz u}$ $F_k = 490(50) \text{ MHz fm}^{-2}$
- Radii flatten out as
 N = 50 is approached
- Reduction of odd-even staggering?

Conclusions

Conclusions

- Laser spectroscopy performed on 65-78Cu
- Preliminary analysis points to
 - $_{\circ}$ Continued inversion of $\pi p_{3/2}$ and $\pi f_{5/2}$
 - Need for proton excitations across Z = 28 to reproduce odd-Cu g-factors
 - Odd-even staggering of charge radii seems to reduce significantly
 - Measurement of g, Q of ⁷⁹Cu will be key
- Comparison with large scale shell model calculations in underway

Thanks for your attention!

Feasibility of ⁷⁹Cu

- Yield: 10x less than ⁷⁸Cu
 - → efficiency boost required!
 - → We think a factor of 3 is possible (laser ionization + transmission)
- Background: 10x more than ⁷⁸Cu
 - → Reducing pressure by a factor of 10 in progress
 - → fast beam gate: factor 3
- Stability of the system needs to be guaranteed
- With all this, we expect a result similar to ⁷⁷Cu

Physics around ⁷⁸Ni

Slide by F. Nowacki, SSNET'16 International Workshop,

November 7 th -11 th 2016

PFSDG-U interaction:

- realistic TBME
- pf shell for protons and gds shell for neutrons
- monopole corrections (3N forces)

sdg proton and neutrons gap ⁷⁸Ni fixed to phenomenological derived values

Calculations:

- excitations across Z=28 and N=50 gaps
- up to 2*10¹⁰ Slater Determinant basis states
- m-scheme code ANTOINE (non public version)
- J-scheme code NATHAN (parallelized version): 0.5*10⁹ J basis states