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Magnetoelectric materials

Why Perovskites?

Why Oxides?

Easy to synthesize large quantities
Cheap reagents  
Oxides are usually stable
Multiferroic properties

Multiferroics

Ferroic Orders:
• ferromagnetism (M)
• ferroeletricity (P)
• ferroelasticity (𝓔), …

Solid state systems exhibiting simultaneous (anti) ferroelectric ((A)FE) and (anti)
ferromagnetic ((A)FM) orders - Multiferroics;

Maximization of the (A)FE-(A)FM coupling

Ability to manipulate the magnetic degrees of 
freedom electrically or vice-versa;

Multifunctional 

Materials:
Open pathways to 

different applicationsMagnetoelectric



RCrO3 - General Aspects

3 Magnetic 

Transitions

For most systems!

2 “independent” magnetic lattices

R=Yb, Er, Y ,Sm
B=Cr
X=O



RCrO3 - General Aspects

∆r∼0.1 (Å)
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Are they magnetoelectric?

Local or macroscopic symmetry changes?

R ion needs to be magnetic?

Where is the TFE?

Or even ferroelectric?

But First:
(1) Produce polycrystalline RCrO3 samples by solid state reaction 

method with high crystallinity with R=Yb, Er, Y and Sm.

(2) Structural characterization & DC magnetization measurements.

Local Probe Studies ????



Experimental Procedure

Polycrystalline Samples

SmCrO3 synthesis optimization

PACSQUIDXRDSynthesis

R2O3

(99.99%)

Cr2O3 

(99.9%)

RCrO3

Grinded
Mix
Pellets
Fired @ high T



XRD Characterization

Space Group: Pbnm

Orthorhombic

Single phase
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XRD Rietveld refinement output at room temperature. 
Experimental pattern (•), Fit curve (_), Residual 

difference (_) and Bragg reflections (|). 

PACSQUIDXRDSynthesis



M(T) Characterization
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Local Probing (PAC)

Quadrupolar Frequency

Asymmetry Parameter

vQ =
eQVzz( )
h

h =
Vyy -Vxx

Vzz

EFG

Ion implantation @ISOLDE
Ion Diffusion @ISOLDE/LISBON

After implantation/Diffusion:
111mCd – 20 minutes @973K 

111In – 48 Hours @1273KVzz - EFG Main component
η - Asymmetry parameter

PACSQUIDXRDSynthesis



Lattice probe location

Linearized augmented plane wave + local 

orbitals method EFG parameters in the rare-

earth and chromium sites for the orthorhombic 

RCrO3. Data on (Gd, Nd, La)CrO3 using 181Hf 

parent probe from literature. The dashed lines 

are guidelines to the eyes. 
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Local Probing in SmCrO3

Representative R(t) functions, corresponding fits and respective Fourier 
transform taken at different temperatures for the 111In probe in SmCrO3. 

(a) Experimental electric field gradient principal component with 111In for the 
SmCrO3 sample. (b) Asymmetry parameter. (c) Probe distribution. 
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Local Probing in SmCrO3

Representative R(t) functions, corresponding fits and respective Fourier 
transform taken at different temperatures for the 111In probe in SmCrO3. 

(a) Experimental electric field gradient principal component with 111In for the 
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Local Probing in SmCrO3

Representative R(t) functions, corresponding fits and respective Fourier 
transform taken at different temperatures for the 111In probe in SmCrO3. 

(a) Experimental electric field gradient principal component with 111In for the 
SmCrO3 sample. (b) Asymmetry parameter. (c) Probe distribution. 
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Representative R(t) functions, corresponding fits and respective Fourier 
transform taken at different temperatures for the 111In probe in SmCrO3. 

(a) Experimental electric field gradient principal component with 111In for the 
SmCrO3 sample. (b) Asymmetry parameter. (c) Probe distribution. 
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Local Probing in SmCrO3



Representative R(t) functions, corresponding fits and respective Fourier 
transform taken at different temperatures for the 111In probe in SmCrO3. 

(a) Experimental electric field gradient principal component with 111In for the 
SmCrO3 sample. (b) Asymmetry parameter. (c) Probe distribution. 
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1 Local Environment

2 Local Environments

723K  300K

Below 300K

VZZ(1) ~ VZZ(2) 

h(1) < h(2) VZZ(1)=100%

VZZ(1)~ VZZ(2)~50%

Local inhomogeneous state emerges
Above TFE and TN(Cr)

Above crystallographic phase transition

regular and distorted environments 
(most probably polar and non polar 

states) coexist 

Local Probing in SmCrO3



Conclusions

Our results point to a more subtle scenario, where locally an
inhomogeneous state emerges. In this new state regular and
distorted environments (most probably polar and non polar
states) coexist.

Future work:

Local Probe studies in the other RCrO3 systems

Use of different probes

Data compatible with the most recent reports, where polar
octahedral rotations and/or cation displacements are at the
origin of a polar order in the paramagnetic state
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