Probing the local structure in multiferroic SmCrO₃

ISOLDE Workshop 2016 December 7-9, 2016 CERN - Switzerland

¹**IFIMUP and IN-** Institute of Nanoscience and Nanotechnology and Department of Physics, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

²Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Germany

³**C2TN**, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal <u>G.N.P. Oliveira</u>¹ R. Teixeira ¹ J. Schell² J.G. Correia³ J.P. Araújo ¹ A.M.L. Lopes ¹

Outline

Technology & Materials

Magnetoelectric materials

Multiferroics

Ferroic Orders:

- ferromagnetism (M)
- ferroeletricity (P)
- ferroelasticity (*E*), ...

Solid state systems exhibiting simultaneous (anti) ferroelectric ((A)FE) and (anti) ferromagnetic ((A)FM) orders - Multiferroics;

Maximization of the (A)FE-(A)FM coupling

Ability to manipulate the magnetic degrees of freedom electrically or vice-versa;

Magnetoelectric

Multifunctional Materials: Open pathways to different applications

Why Perovskites? Why Oxides?

- Easy to synthesize large quantities
- Cheap reagents
- Oxides are usually stable
- Multiferroic properties

RCrO₃ - General Aspects

R=Yb, Er, Y ,Sm B=Cr X=O

Orthorhombically distorted perovskitelike structure

2 "independent" magnetic lattices

For most systems!

RCrO₃ - General Aspects

- **But First:**
- (1) Produce polycrystalline RCrO₃ samples by solid state reaction method with high crystallinity with R=Yb, Er, Y and Sm.
- (2) Structural characterization & DC magnetization measurements.

Experimental Procedure

SmCrO₃ synthesis optimization

Grinded Mix Pellets Fired @ high T

Polycrystalline Samples

XRD Characterization

Orthorhombic Space Group: Pbnm

Single phase

R=	Yb	\mathbf{Er}	Y	\mathbf{Sm}
Ionic radius (Å)	1.042	1.060	1.075	1.133
$a(\text{\AA})$	5.4991	5.5091	5.5157	5.4970
b (Å)	7.4847	7.5212	7.5309	7.6436
$c(\mathrm{\AA})$	5.1918	5.2275	5.2419	5.3670
$V(Å^3)$	213.7	216.6	217.7	225.5
$ ho~({ m g/cm^3})$	8.190	9.316	5.902	8.166
Cr-O1-Cr	143.27	146.60	146.89	153.14

Atomic positions: R: 4c (x, $\frac{1}{4}$, z); Cr: 4b (0, 0, $\frac{1}{2}$); O (1): 4c (x, $\frac{1}{4}$, z) and O (2): 8d (x, y, z)

XRD Rietveld refinement output at room temperature. Experimental pattern (•), Fit curve (_), Residual difference (_) and Bragg reflections (|).

M(T) Characterization

Local Probing (PAC)

Linearized augmented plane wave + local orbitals method EFG parameters in the rareearth and chromium sites for the orthorhombic RCrO₃. Data on (Gd, Nd, La)CrO₃ using ¹⁸¹Hf parent probe from literature. The dashed lines are guidelines to the eyes.

earth and chromium sites for the orthorhombic RCrO₃. Data on (Gd, Nd, La)CrO₃ using ¹⁸¹Hf parent probe from literature. The dashed lines are guidelines to the eyes.

are guidelines to the eyes.

are guidelines to the eyes.

earth and chromium sites for the orthorhombic RCrO₃. Data on (Gd, Nd, La)CrO₃ using ¹⁸¹Hf parent probe from literature. The dashed lines are guidelines to the eyes.

/1/

723K → 300K 1 Local Environment

Below 300K 2 Local Environments

Local inhomogeneous state emerges Above T_{FE} and $T_{\rm N}(Cr)$ Above crystallographic phase transition

 $V_{ZZ}(1) \sim V_{ZZ}(2)$ $\eta(1) < \eta(2)$

regular and distorted environments (most probably polar and non polar states) coexist

Conclusions

Data compatible with the most recent reports, where polar octahedral rotations and/or cation displacements are at the origin of a polar order in the paramagnetic state

Our results point to a more subtle scenario, where locally an inhomogeneous state emerges. In this new state regular and distorted environments (most probably polar and non polar states) coexist.

Future work:

Local Probe studies in the other $RCrO_3$ systems Use of different probes

Acknowledgements

This work was supported by:

FCT-Portugal/CERN:

projects NORTE-070124-FEDER-000070 PTDC/FIS/NAN/0533/2012 QREN (NORTE-07-0124-FEDER-000070 CERN/FIS-NUC/0004/2015 IF/00686/2014

scholarship

SFRH/BD/80112/2011 (G.N.P. Oliveira)

Federal Ministry of Education and Research (BMBF): grants 05K13TSA and 05K16PGA

The authors further acknowledge the ISOLDE collaboration for supportive access to beam time.

Thank You

Thank you for the attention. Any questions?

