KU LEUVEN

Studying the evolution of the nuclear structure along the zinc isotope chain, close to ⁷⁸Ni, via multi-step Coulomb Excitation

Dr. Andrés Illana Sisón

OUTLINE

- Physics motivation
- The experiments at HIE-ISOLDE
- Preliminary results
- Outlook and future perspectives

Physics motivation

This region has been studied using different techniques: COULEX, βdecay, RDDS, laser spectroscopy,...

Reduction of the proton $f_{5/2}$ - $f_{7/2}$ gap when filling $\upsilon g_{9/2}$. T. Otsuka, Phys. Scr. T152 (2013) 014007

KU LEUVEN

ISOLDE Workshop - December 2016

Physics motivation

Why and what?

- ✓ Large disagreement for ⁷⁴Zn B(E2). The reduced value for ⁷⁴Zn is not predicted by any model.
- Clarify discrepancies with half-lifes measurements.
- ✓ Measure B(E2: $2^+ \rightarrow 0^+$) and B(E2: $4^+ \rightarrow 2^+$).
- ✓ Try to measure B(E2: $6^+ \rightarrow 4^+$).
- Measure Quadrupole moments. Observation of 4⁺ in ⁸⁰Zn.

KU LEUVEN

- ✓ Identification of low lying no-yrast states.
- National Nuclear Data Center (NNDC). DSAM experiments.
- J. Van de Walle et al., Phys. Rev. C 79, 014309 (2009) Coulex experiment
- C. Louchart et al., *Phys. Rev. C* 87, 054302 (2013)
- ▲ I. Čeliković et al., Act. Phys. Pol. B 44, 375-380 (2013)
- ▼ S. Hellgartner, PhD Thesis, TU Munich (2015)
- O Y. Shiga et al., Phys. Rev. C 93, 024320 (2016)
- M. Honma et al., *Phys. Rev. C* 80, 064323 (2009)
- ... S. Lenzi et al., Phys. Rev. C 82, 054301 (2010)
- J.-P. Delaroche et al., *Phys. Rev. C* **81**, 014303 (2010)
- T. Osuka., Private communication (2016)

ISOLDE Workshop - December 2016

COULEX @ HIE-ISOLDE

Which is the advantage of using beams with more energy?

- High-lying states can be more efficiently populated (still in safe COULEX regime). Multi-step COULEX.
- ✓ More sensitivity in the Quadrupole moment determination.

OUTLINE

- Physics motivation
- The experiments at HIE-ISOLDE
- Preliminary results
- Outlook and future perspectives

The MINIBALL array at HIE-ISOLDE

COULEX setups

Two possible setups are available: CREX and the standard COULEX chamber

Setup for 2015

Setup for 2016

8

The experiments at HIE-ISOLDE

E_P

 θ_{P}

Ет

KU LEUVEN

Target

¹⁹⁶Pt or ²⁰⁸Pt

2015: Due to the problems with HIE-ISOLDE post-acceleration, we could only measure 6h/daily work and 4 nights during 3 weeks. ~ 20% time!

Isotope	Target	Energy [MeV/u]	Intensity [pps]	Total hours	
⁷⁴ Zn	¹⁹⁶ Pt	2.85	~ 1.0 10 ⁶	28	
	¹⁹⁶ Pt	4.0	~ 1.0 10 ⁶	7	
	²⁰⁸ Pb	4.0	~ 1.0 10 ⁶	31	
⁷⁶ Zn	¹⁹⁶ Pt	2.85	~ 5.0 10 ⁵	20	
	²⁰⁸ Pb	4.0	~ 5.0 10 ⁵	14	

2016: Normal conditions during 6 days.

Isotope	Target	Energy [MeV/u]	Intensity [pps]	Total hours	
⁷⁸ Zn	¹⁹⁶ Pt	4.3	~ 3.0 10 ⁴	~ 15	
	²⁰⁸ Pb	4.3	~ 1.5 10 ³	~ 100	

2 different targets had been used: ¹⁹⁶Pt (2 mg/cm²) and ²⁰⁸Pb (4 mg/cm²)

74,76,78**7**n

9

OUTLINE

- Physics motivation
- The experiments at HIE-ISOLDE
- Preliminary results
- Outlook and future perspectives

Preliminary results

Different energies different kinematics

We observe the difference between 2.85 MeV/u and 4.0 MeV/u

⁷⁴Zn on ¹⁹⁶Pt at 4.0 MeV/u

ISOLDE Workshop - December 2016

Dr. A. Illana Sisón

ISOLDE Workshop - December 2016

Dr. A. Illana Sisón

KU LEUVEN

16

OUTLINE

- Physics motivation
- The experiments at HIE-ISOLDE
- Preliminary results
- Outlook and future perspectives

Outlook and future perspectives

- Experimental campaign in 2015 was successful despite of the problems in the accelerator.
- The analysis will provide a lof of information:
 - B(E2;2⁺ \rightarrow 0⁺) and B(E2;4⁺ \rightarrow 2⁺) values for ^{74,76}Zn.
 - Quadrupole moment of first 2⁺ state in ⁷⁴Zn.
- The preliminary results from ⁷⁸Zn look promising, we expect to extract:
 - $B(E2;2^+\rightarrow 0^+)$ and $B(E2;4^+\rightarrow 2^+)$ values.
 - Quadrupole moment of first 2⁺ state.
 - Identify this new state. γγ coincidence and improving the DC.

KU LEI

18

The IS577 COLLABORATION: KU Leuven, CEA Saclay, HIL Warsaw, IKP Köln, T.U. Darmstadt, U. of Jyväskylä, INFN Firenze, INFN LNL, U. of West Scotland, CERN, T.U. Munich, U. Lund, U. of Surrey, U. Sofia, CSNSM, IPN Orsay, PSI and IEM-CSIC

KU LEUVEN

The COULEX technique

COULEX is the most powerful and direct experimental method to study nuclear collectivity and shapes.

- ✓ Excitation mechanism is purely electromagnetic. The only nuclear properties involved → matrix elements of the electromagnetic multipole moments. $B(E2; 0^+ \rightarrow 2^+) = \langle 0^+ ||E2||2^+ \rangle^2$
- ✓ Bringing information on Qs and relative signs of matrix elements → direct distinguish between prolate and oblate shape. $\langle 2^+ || E2 || 2^+ \rangle = \frac{1}{0.7579} Q_2$

Important considerations in COULEX

Pure electromagnetic interaction if only the distance of closest approach D_{min} is at least 5 fm. Therefore, the nuclear part of the interaction can be neglected (Cline's criterion)

$$D_{min} \ge r_s = [1.25 (A_1^{1/3} + A_2^{1/3}) + 5] \text{ fm}$$

The excitation process depends on: E_{beam} , Z of projectile and target nuclei, $\theta_{scattering}$

The MINIBALL array at HIE-ISOLDE

KU LEUVEN

The experiments at HIE-ISOLDE

Summary about all the Zn experiments.

Year	Type Experiment	Isotope	Target	Extra information	Beam Intensity [pps]	Energy [MeV/u]	Time Laser On [h]	Time Laser On/Off [h]	EBIS pulses [Hz]	lon Pulse size [μs]
2015 COULEX		⁷⁴ Zn	¹⁹⁶ Pt	1 st week	~ 1.0 10 ⁶	4.0	13.5	5.0	2.0	~ 100
			¹⁹⁶ Pt	1 st /3 rd week	~ 1.0 10 ⁶	2.85	6.5	0.5	2.0 / 10.0	~ 100
		²⁰⁸ Pb	3 rd week	~ 1.0 106	4.0	25.0	8.0	10.0	~ 100	
	COULEX	⁷⁶ Zn	¹⁹⁶ Pt	2 nd /3 rd week	~ 1.0 10 ⁶ / <1.0 10 ⁵	2.85	25.0	4.0	5.0 / 10.0	~ 100
			²⁰⁸ Pb	2 nd /3 rd week	~ 1.0 10 ⁶ / <1.0 10 ⁵	4.0	9.0		5.0 / 10.0	~ 100
2012	C-REX	⁷² Zn	¹⁰⁹ Ag	-	~ 3.6 10 ⁷	2.87	66.0	-	12.0	~ 800
2011	T-REX	⁷² Zn	DPE	-	~ 1.0 10 ⁷	2.7	72.5	-	14.0	~ 800
2004	COULEX	⁷⁴ Zn	¹²⁰ Sn	-	~ 1.1 106	~ 2.8	8.5	3.0	12.0	~ 300
2004	COULEX	⁷⁶ Zn	¹²⁰ Sn	-	~ 3.5 106	~ 2.8	11.5	2.5	12.0	~ 300

As a consequence of this anomalous beam properties, we observed high multiplicity \rightarrow It reduced our statistic

Time different Particle-Ebis Vs Multiplicity

ISOLDE Workshop - December 2016

The experiments at HIE-ISOLDE

- Measure B(E2: $2^+ \rightarrow 0^+$), B(E2: $4^+ \rightarrow 2^+$) and B(E2: $6^+ \rightarrow 4^+$)
- Measure Quadrupole moments
- Clarify discrepancies with halflifes measurements

- Observation of 4⁺ in ⁸⁰Zn
- Identification of non-yrast states

Isotope	Energy (MeV/u)	Intensity (pps)	2+→0+	4+→2+	6+→4+
⁷⁴ Zn	4.3	5.10 ⁵	6.9.10 ⁴	2235	17
⁷⁶ Zn	4.3	5.10 ⁵	5.4.10 ⁴	1470	11
⁷⁸ Zn	4.3	10 ⁵	5100	37	0.15
⁸⁰ Zn	4.3	104	130	20	0.00012