

PERSPECTIVES FOR NUCLEAR ASTROPHYSICS WITH RADIOACTIVE BEAMS

Anu Kankainen University of Jyväskylä

50LD2

Facility for Antiproton and Ion Research in Europe GmbH

NuPECC Long Range Plan 2017

Working Group on Nuclear Astrophysics NuPECC Liaisons: Alex Murphy, Maria Borge, Pierre Descouvemont; Convener: Gabriel Martínez-Pinedo, Alison Laird

WG members: Dimiter Balabanski, Beyhan Bastin, Andreas Bauswein, Carlo Broggini, Cristina Chiappini, Roland Diehl, Cesar Domingo Pardo, Daniel Galaviz Redondo, Gyürky György, Matthias Hempel, Raphael Hirschi, Samuel Jones, Jordi Jose, Anu Kankainen, Jérôme Margueron, Micaela Oertel, Nils Paar, Rene Reifarth, Friedrich Röpke, Dorothea Schumann, Nicolas de Seréville, Aurora Tumino, Stefan Typel, Christof Vockenhuber

Sub-Working Group on Radioactive Beams: Anu Kankainen Beyhan Bastin César Domingo Pardo

Outline of the talk

Radioactive beam facilities in Europe
 Focus of this talk:

 Novae and type I X-ray bursts (rp process)
 r process
 Summary

Radioactive Beam Facilities in Europe

Radioactive beam facilities in Europe

Nuclear astrophysics at European RIB facilities

Novae and type I X-ray bursts

Classical novae

Nucleosynthesis (mainly (p,γ), (p,α) and β⁺) up to Ca
~ 100 isotopes, ~ 180 reactions

MODELING:

Mixing between the WD and accreted material? Contribution to the lithium abundance (⁷Be)?

OBSERVATIONS:

Multi-wavelength observations Gamma-ray astronomy Presolar grains

Isotopic abundances!

Possible to determine all reaction rates based on experimental information soon! **EXPERIMENTS:** Few key reactions, e.g. ${}^{18}F(p,\alpha){}^{15}O$ \rightarrow 511 keV γ -rays ${}^{25}Al(p,\gamma){}^{26}Si$ \rightarrow 1809 keV γ -rays ${}^{30}P(p,\gamma){}^{31}S$ \rightarrow heavier elements, ${}^{30}Si/{}^{28}Si$ ratio

Type I X-ray bursts

MODELING:

Single-zone vs multizone models? Light curves? Ashes to the neutron-star crust? Superbursts? Cooling (URCA)?

OBSERVATIONS:

More and more XRBs observed e.g. 48 binaries /Rossi X-ray timing explorer [D.K. Galloway et al., Astrophys.J. Suppl. Ser. 179 (2008)360]

EXPERIMENTS:

- Breakout from the CNO cycle: ¹⁵O(α,γ)¹⁹Ne, ¹⁴O(α,p)¹⁷F, ¹⁸Ne(α,p)²¹Na
- Light curves: (α,p) reactions and (p,γ) to lesser extent. Key reaction: ³⁰S(α,p)³³Cl
- > Flow above ⁵⁶Ni: ⁵⁶Ni(α ,p), ⁵⁶Ni(p, γ)
- Masses and beta decays

Sensitivity studies for type I X-ray bursts: reaction rate vs light curves

R. Cyburt et al., Astrophys. J. 830 (2016) 55

TABLE 2 Reactions that impact the burst light curve in the multi zone X-ray burst model.

Rank	Reaction	$Type^{a}$	$\rm Sensitivity^b$	Category
1	$^{15}\mathrm{O}(\alpha,\gamma)^{19}\mathrm{Ne}$	D	16	1
2	${}^{56}\mathrm{Ni}(\alpha,\mathrm{p}){}^{59}\mathrm{Cu}$	\mathbf{U}	6.4	1
3	59 Cu(p, γ) 60 Zn	D	5.1	1
4	${}^{61}\mathrm{Ga}(\mathrm{p},\gamma){}^{62}\mathrm{Ge}$	D	3.7	1
5	$^{22}Mg(\alpha,p)^{25}Al$	D	2.3	1
6	${}^{14}{\rm O}(\alpha,{\rm p}){}^{17}{\rm F}$	D	5.8	1
7	$^{23}\mathrm{Al}(\mathrm{p},\gamma)^{24}\mathrm{Si}$	D	4.6	1
8	$^{18}\mathrm{Ne}(\alpha,\mathrm{p})^{21}\mathrm{Na}$	\mathbf{U}	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	${}^{19}{ m F}({ m p},\alpha){}^{16}{ m O}$	\mathbf{U}	1.3	2
11	$^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$	\mathbf{U}	2.1	2
12	$^{26}\mathrm{Si}(\alpha,\mathrm{p})^{29}\mathrm{P}$	\mathbf{U}	1.8	2
13	${}^{17}{\rm F}(\alpha,{\rm p}){}^{20}{\rm Ne}$	\mathbf{U}	3.5	2
14	$^{24}\mathrm{Mg}(\alpha,\gamma)^{28}\mathrm{Si}$	\mathbf{U}	1.2	2
15	$^{57}\mathrm{Cu}(\mathrm{p},\gamma)^{58}\mathrm{Zn}$	D	1.3	2
16	60 Zn $(\alpha, p)^{63}$ Ga	\mathbf{U}	1.1	2
17	${}^{17}{ m F}({ m p},\gamma){}^{18}{ m Ne}$	\mathbf{U}	1.7	2
18	${ m ^{40}Sc}({ m p},\gamma){ m ^{41}Ti}$	D	1.1	2
19	$ m ^{48}Cr(p,\gamma)^{49}Mn$	D	1.2	2

 $^{\rm a}$ Up (U) or down (D) variation that has the largest impact

^b $M_{LC}^{(i)}$ in units of 10³⁸ ergs/s

Experiments for novae and the rp process

High-sensitivity γ spectroscopy

Interesting, high-intensity beams at GANIL-SPIRAL1 and HIE-ISOLDE

Miniball at ISOLDE

Pioneering study: ¹⁴O(α,p)¹⁷F in time reverse kinematics IS424 @ REX-ISOLDE J.J. He, P. Woods et al., PRC 80, 042801(R) (2009)

→ Tuneable energies required to apply time reverse technique to other key X-ray burster reactions such as ${}^{34}Ar(\alpha,p){}^{37}K$

M..J. G. Borge (CERN-ISOLDE)

Transfer reactions in inverse kinematics

Recent (d,n) studies with GRETINA at NSCL: ${}^{57}Cu(p,\gamma){}^{58}Zn$ via d(${}^{57}Cu,n){}^{58}Zn^*$ [C. Langer et al., PRL 113, 032502 (2014)] ${}^{26}Al(p,\gamma){}^{27}Si$ via d(${}^{26}Al,n){}^{27}Si^*$ [A. Kankainen et al., EPJA 52, 6 (2016)]

Beam, e.g. ²⁶Al, ³⁰P, ⁵⁷Cu

 $\mathsf{GRETINA} \rightarrow \gamma$ -rays

Target: CD_2 Backgr.: C or CH_2

In Europe: Experiments with AGATA "Travelling" detector \rightarrow utilize different facilities

Direct reactions and Coulomb dissociation at R³B

Active target time projection chamber detectors

G.F. Grinyer et al.

Type I X-ray bursts: mass measurements still needed!

A. Parikh , PPNP 69 (2013) 225

Table 1

Mass measurements desired to improve calculations of nucleosynthesis in XRBs [145,146]. Estimated masses and uncertainties from Ref. [174] are given with a # symbol; increased precision is required for the other, experimental masses listed. Masses required primarily to better quantify reaction rate equilibria at waiting point nuclei (W) or refine theoretical rate calculations (T) are indicated.

Nuclide	Mass excess [174] (keV)	Purpose
Nuclide $2^{6}p$ $2^{7}S$ $3^{1}Cl$ $4^{3}V$ $4^{5}Cr$ $4^{6}Mn$ $4^{7}Mn$ $5^{1}Co$ $5^{6}Cu$ $6^{1}Ga$ $6^{2}Ge$ $6^{6}Se$ $7^{0}Kr$ $7^{1}Br$ $8^{3}Nb$ $8^{4}Nb$ $8^{6}Tc$ $8^{9}Ru$ $9^{0}Rh$ $9^{6}Ag$	Mass excess $[174]$ (keV) #10 973 ± 196 #17 543 ± 202 -7067 ± 50 #-18 024 ± 233 -18 965 ± 503 #-12 370 ± 112 #-22 263 ± 158 #-27 274 ± 149 #-38 601 ± 140 -47 090 ± 53 #-42 243 ± 140 #-41 722 ± 298 #-41 676 ± 385 -57 063 ± 568 -58 959 ± 315 #-61 879 ± 298 #-53 207 ± 298 #-53 216 ± 503 #-64 571 ± 401	Purpose W W W W W W W W W W W W W
⁹⁰ Rh ⁹⁶ Ag ⁹⁷ Cd ⁹⁹ In ¹⁰³ Sn	$\begin{array}{l} \#-53216\pm503\\ \#-64571\pm401\\ \#-60603\pm401\\ \#-61274\pm401\\ \#-66974\pm298 \end{array}$	W stand T ^b Hea T W T

Sensitivity studies on masses for the rp process

Different scenarios, different nuclei important

A. Parikh et al. PRC 79, 045802 (2009)

Model	T_p (GK)	$(XYZ)_i$	Δt (s)	$X_{f,\max}^{a}$	Endpoint ^b $(X_f > 10^{-2})$
K04	1.36	(0.73,0.25,0.02)	~ 100	¹ H, ⁶⁸ Ge, ⁷² Se, ⁶⁴ Zn, ⁷⁶ Kr	⁹⁶ Ru
S01	1.91	(0.718, 0.281, 0.001)	~ 300	¹⁰⁴ Ag, ¹⁰⁶ Cd, ¹⁰⁵ Ag, ¹⁰³ Ag, ¹ H	¹⁰⁷ Cd
F08	0.99	(0.40, 0.41, 0.19)	~ 50	⁶⁰ Ni, ⁵⁶ Ni, ⁴ He, ²⁸ Si, ¹² C	⁷² Se
hi <i>T</i>	2.50	(0.73, 0.25, 0.02)	~ 100	¹ H, ⁷² Se, ⁶⁸ Ge, ⁷⁶ Kr, ⁸⁰ Sr	^{103}Ag
low T	0.90	(0.73, 0.25, 0.02)	~ 100	⁶⁴ Zn, ⁶⁸ Ge, ¹ H, ⁷² Se, ⁶⁰ Ni	⁸² Sr
long	1.36	(0.73, 0.25, 0.02)	$\sim \! 1000$	⁶⁸ Ge, ⁷² Se, ¹⁰⁴ Ag, ⁷⁶ Kr, ¹⁰³ Ag	¹⁰⁶ Cd
short	1.36	(0.73, 0.25, 0.02)	~ 10	¹ H, ⁶⁴ Zn, ⁶⁰ Ni, ⁴ He, ⁶⁸ Ge	⁶⁸ Ge
low Z	1.36	$(0.7448, 0.2551, 10^{-4})$	~ 100	⁶⁸ Ge, ¹ H, ⁷² Se, ⁶⁴ Zn, ⁷⁶ Kr	⁹⁶ Ru
hiZ	1.36	(0.40, 0.41, 0.19)	~ 100	⁵⁶ Ni, ⁶⁰ Ni, ⁶⁴ Zn, ³⁹ K, ⁶⁸ Ge	⁷² Se
hiZ2	1.36	(0.60, 0.21, 0.19)	$\sim \! 100$	⁶⁰ Ni, ⁶⁴ Zn, ⁵⁶ Ni, ⁴ He, ⁶⁸ Ge	⁶⁸ Ge

^aIsotopes with the largest post-burst mass fractions $X_{f,\max}$, in descending order for each model, when using standard rates—see Table II.

^bHeaviest isotope with $X_f > 0.01$ for each model, when using standard rates.

Masses for the rp process: heavier region

Future directions:

- high-precision mass measurements of N = Z nuclei between Zr-80 and Sn-100
- trap-assisted decay spectroscopy of N = Z nuclei between Zr-80 and Sn-100

Mass measurement developments in Europe

Penning traps:

ISOLTRAP @ CERN JYFLTRAP @ IGISOL SHIPTRAP @ GSI

Coming:

MLLTRAP@SPIRAL2 (mass.) PIPERADE@SPIRAL2 (purif.) MATS@FAIR (mass&purif. traps)

High precision (a few keV or less) $t_{1/2} \approx 100$ ms or longer (typically)

MR-TOF: ISOLTRAP, GSI/FAIR

Coming: JYFL - JYFLTRAP & MARA-LEB (in progr.) PILGRIM at S³-LEB

Worse precision (~tens of keV) $t_{1/2}$ ~10 ms or longer (typically)

R.N. Wolf et al., NIMA 686 (2012) 82

Both methods can be used for beam purification!

Note: storage ring mass measurements discussed later related to the r process

New methods

r process

r-process: astrophysical site(s)?

v-driven outflows from hot neutron star formed after a core-collapse SN

A <100 via weak r and/or vp process Mergers: neutron star – neutron star neutron star - black hole

Dynamically ejected material from the mergers Outflows from the accretion disc around the remnant

To very heavy elements (until fission cycling)

MOST PROMISING SCENARIO!

r-process: observations

What if the merger rate is too low to produce enough r process material? Possibly other sites contribute as well...

r-process: sensitivity studies

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

The impact of individual nuclear properties on *r*-process nucleosynthesis

M.R. Mumpower^a, R. Surman^{a,*}, G.C. McLaughlin^b, A. Aprahamian^a

PHYSICAL REVIEW C 83, 045809 (2011)

Dynamical *r*-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input

A. Arcones^{1,2,*} and G. Martínez-Pinedo²

Data needed on:

- masses
- β-decay rates
- n-emission probabilities P_n
- (n,γ) cross sections on n-rich nuclei

The r process: the main features

Note! For the main r process scenario (A>120)

Experimental masses vs theoretical models

Need more experimental data to test and validate theoretical models

r process: masses with highest impact

Sensitivity studies for different scenarios

Important masses throughout the r-process region but in particular close to the Z=50, N=82 and N=126 shell closures

Masses: progress in the ¹³²Sn region

In addition:

- Rare-earth peak region at CPT, and recently at JYFLTRAP
- Neutron-rich nuclei close to Z=28, N=50 at ISOLTRAP

131 Cd (t_{1/2} = 68 ms) with MR-TOF

r-process abundance pattern obtained within the v-driven wind scenario

blue: AME2012 masses and HFB 24 calculations where measurements not available (including ¹²⁹⁻¹³¹Cd) red: same as blue, but using ISOLTRAP masses for ¹²⁹⁻¹³¹Cd

The third r-process peak - the N=126 region

Mass and half-life measurements at the ESR

Adapted from Yu. Litvinov

r-process: beta-decay half-lives

R. Caballero-Folch, C. Domingo-Pardo et al., PRL 117, 012501 (2016)

Unsatisfactory performance of state-of-the-art global models on both sides of N=126 → Large uncertainties in r-process model calculations

Need of more experimental data close to N=126! NUSTAR@FAIR

r process: beta-delayed neutron branches

Practically all the nuclei to be discovered at the next RIB-facilities will be neutron emitters.

But we know almost nothing about n-emission (less than 5%)!

r process: beta-delayed neutron branches

BELEN@JYFL

FAIR – NUSTAR Instrumentation already in use! AIDA / Univ. Edinburgh UPC (Spain) ORNL + UTK (USA) **GSI** (Germany) JINR (Russia) **RIKEN** (Japan)

BRIKEN:

- $\begin{array}{l} \bullet \ 20 \ P_{\beta 1n} \ and \ 14 \ P_{\beta 2n} \ values \ @ \ N=\!50 \ RIBF \ 128 \\ \bullet \ 33 \ P_{\beta 1n} \ , \ 11 \ P_{\beta 2n} \ and \ \ 3xP_{\beta 3n} \ @ \ N=\!82 \ RIBF \ 127 \\ \bullet \ 89 \ P_{\beta 1n} \ , \ 20 \ P_{\beta 2n} \ @ \ 50<\!N<\!82 \ RIBF \ 139 \end{array}$

r process: neutron captures

Total Absorption Spectroscopy Transfer reactions to constrain capture cross sections (direct or statistical) γ -strength functions, level densities 140 ¹²⁶Sn(⁹Be,⁸Be) ¹²⁴Sn(d,p) 128Sn(9Be,8Be) SuN data (HFB) 69Ni(n,γ)⁷⁰Ni rate (c) SuN data, lower,upper (HFB) 126Sn(d,p) 10⁷ Ni SuN data, FG upper BRUSLIB N 130Sn(9Be,8Be) ⁸Ni E1, Rossi et al. (2013) JINA REACLIB Ni E1, Achakovskiy et al. (2015 proton number ¹²⁸Sn(d,p) Achakovskiv et al. (201) ¹⁸F(d,p) 10 N_A<σv> (cm³s⁻¹mol⁻¹) 132Sn(9Be,8Be) f(E₇) (MeV⁻³) 130Sn(d,p) ²⁶Al(d,p) 10 132Sn(d,p) ¹³⁴Te(d,p) 10 10⁵ ¹³²Sn(d,t) ⁸⁰Ge(d,p) 10 0 8 10 12 14 16 18 T(10⁹ K) ⁸²Ge(d,p) E_v (MeV) S. Liddick et al., PRL 116, 242502 (2016) 15N(d,p) ⁸⁴Se(d,p) neutron number N 20 + Neutron-time-of-flight detectors ⁷Be(d,t) (e.g. MONSTER) ¹⁰Be(d,p) Slide adapted from G. de Angelis direct reaction and r-process physics cases

Summary

Acknowledgments

Working Group on Nuclear Astrophysics NuPECC Liaisons: Alex Murphy, Maria Borge, Pierre Descouvemont; Convener: Gabriel Martínez-Pinedo, Alison Laird

WG members: Dimiter Balabanski, Beyhan Bastin, Andreas Bauswein, Carlo Broggini, Cristina Chiappini, Roland Diehl, Cesar Domingo Pardo, Daniel Galaviz Redondo, Gyürky György, Matthias Hempel, Raphael Hirschi, Samuel Jones, Jordi Jose, Anu Kankainen, Jérôme Margueron, Micaela Oertel, Nils Paar, Rene Reifarth, Friedrich Röpke, Dorothea Schumann, Nicolas de Seréville, Aurora Tumino, Stefan Typel, Christof Vockenhuber