Status of SPL HOM studies at TRIUMF

Rick Baartman and Dobrin Kaltchev

May 9, 2009

Contents

1	History	3
2	Gluckstern's example repeated (dipole mode test for TALOBBU)	4
3	Run with SNS setup provided by D. Jeon: monopole and dipole mode	7
4	Modifications of TALOBBU	g
5	Agreement with the Cern code, monopole mode, first pulse	10

f 1 History

- received Dong-o Jeon's code TALOBBU transverse&longitudinal HOM (already bench-marked against TDBBU code (only transverse))
- Cern result (J. Tückmantel's paper^a) received end of Jan 09;
- three tiny notes written qualitative agreement over first pulse, but seed unknown
- my mistake "h=6" instead of "h=6.1" in text of third note (D.K.) caused
 J. Tückmantel to think our results were on resonance 1-2 months ago
- ullet received data for fixed seed (HOM freq. and charge jitter $dQ)\sim 10 days$ ago
- nearly exact agreement between the codes last week!

^aJ. Tückmantel, HOM Dampers or not in Superconducting RF Proton Linacs

2 Gluckstern's example repeated (dipole mode test for TALOBBU)

Difference equations for M bunches interacting with N HOM cavity modes $^{\mathrm{a}}$

- single dipole HOM
- ullet const. inter-bunch time au
- constant 2x2 transport matrix M between cav.

$$y_m^{n+1} = M_{11} y_m^n + M_{12} \frac{\gamma_n}{\gamma_{n+1}} \theta_m^n + r_1 \sum_{l=0}^{m-1} s_{m-l} y_l^n; \quad r_1 \equiv M_{12} R / \gamma_n$$

$$\theta_m^{n+1} = M_{21} y_m^n + M_{22} \frac{\gamma_n}{\gamma_{n+1}} \theta_m^n + r_2 \sum_{l=0}^{m-1} s_{m-l} y_l^n; \quad r_2 \equiv M_{22} R / \gamma_n$$

$$s_k \equiv e^{-\frac{k \omega \tau}{2 Q}} \sin(k \omega \tau)$$

^aR.L. Gluckstern, R.K. Cooper and P.J. Channell, *Cumulative Beam Breakup in RF Linacs*, Part Acc, vol 16 pp 125-153.

Gluckstern parameter	value
L dist. betw. cavities	1m
N HOMs	15 or 30
M bunches	2000
Q	1000
$\gamma = const$ coasting	6
$M_{11} = \cos \mu$	1
$M_{12} \equiv L$	1
$M_{21} \equiv -\frac{\sin^2 \mu}{L}$	
$M_{22} \equiv \cos \mu$	
ωau	1.846 2π
$r_1 \equiv r_2$	$2.88 \ 10^{-3}$
μ (no) focusing	0
J of Eqn. 59 Gluck.	0.9986298
$(J<1{ m means}{ m stable})$	

Brute force result, same as TALOBBU result – to be compared with Figures 1a,b,c,d in Gluckstern's paper. Shown are coordinates of 2000 bunches after cavities 15 and 30. Left: all bunches enter at 1 mm. Right: only the first bunch enters at 1 mm

- Brute force means that the values of y are stored in for all n and m (done in Fortran and Mathematica), but there is no need to store all m;
- It can be shown that the Gluckstern's difference eqn-s ^a are identical to the recursive procedure in TDBBU, TALOBBU and J. Tückmantel's code ^b, namely: Introduce complex V. The m-th bunch passes all cavities. At each cavity the HOM mode voltage V is updated and stored. The imaginary part of V is the HOM kick. The following script does the same as the Brute force:

^aR.L. Gluckstern, R.K. Cooper and P.J. Channell, *Cumulative Beam Breakup in RF Linacs*, Part Acc, vol 16 pp 125-153.

^bJ. Tückmantel, HOM Dampers or not in Superconducting RF Proton Linacs

3 Run with SNS setup provided by D. Jeon: monopole and dipole mode

TALOBBU parameters to reproduce a

TALOBBU variable	value	definition
particle	Н-	
CRRNT	50	current, mA
FREQB	402.5	bunch frequency, MHz
FREQF	805	fund. mode freq., MHz
EI	185	initial energy,MeV
DFHOM(D)	0.1(blue)	spread (uniform)
	or 0.01 (black)	

4 dipole and 1 monopole HOM in each med- and high-beta cavities

^aD. Jeon , L. Merminga , G. Krafft , B. Yunn, R. Sundelin, J. Delayen, S. Kim, M. Doleans, *Cumulative beam break-up study of the spallation neutron source superconducting linac*, NIM A 495 (2002) 85-94.

to be compared with Fig. 9 from a for unknown random seed

4 Modifications of TALOBBU

4 Modifications of TALOBBU

- random generator changed to ranmar
- ullet added random Gaussian charge jitter dQ
- (minor) The complex HOM voltage V of a cavity HOM is such that the first bunch (m=1) enters this cavity at zero local time. The first bunch (m=1) should pass all cavities unaffected. In the original code the first bunch already experienced small time shifts. I have changed this (DK) and it did not affect the results.

5 Agreement with the Cern code, monopole mode, first pulse

TALOBBU variable	value	definition
CRRNT	400	current, mA
FREQB	352.2	f_b , bunch frequency, MHz
FREQF	704.4	fundamental mode frequency, MHz
EI	150	initial kin. energy,MeV
NMICRO	50000	$\equiv M$, numb. of bunches for 1 ms pulse
NCAV_MED	150	$\equiv N$, number of cavities
VTTF(I), $i=1,,N$	20.7	acc. volt. of all cavities
PHSNOM(I), i=1,,N	-15	acc. volt. phase of all cav,deg
CALL DRIFT(X,1.75)	1.75	drift len. betw. cav.,m
(R/Q)	50	Ω
Q_{ext}	108	Ω
$< f_h >$	2283.83	$=6.48445 imes f_b$, MHz
DFHOMM	0.1	r.m.s. of frequency f_h spread, Gaussian
dQ	0.1	r.m.s. of charge jitter Q , Gaussian

Here: $E\equiv X_5,\;t\equiv X_6,$ $dE=E-E_0,\;dt=t-t_0.$

Left: TALOBBU run with the 150 f_h values and 50000 dQ values sent as two .dat files

Right: Cern code result sent as file DobPhaseSpace.dat

A scatter-plot, a 2D plot with pairs (your_dE_i,my_dE_i) for i = 0,50000 and similar for dt. For perfect agreement we would have all points on a straight line with slope 1

Left:

 $(your_{-}dE_{i},my_{-}dE_{i})$

Right:

 $(your_dt_i, my_dt_i)$