

CLIC Beam Instrumentation Challenges

- Introduction
- Beam instrumentation Challenges

Update from CLIC Beam Instrumentation workshop in June 2009

• Perspective & Conclusion

- Manipulating high charge beams (Machine Protection issues, Radiation level, Non intercepting beam diagnostic, ..)
- Very strict tolerances on the beam phase stability (0.1º@12GHz)
- Reliability and availability : This is 'just' the RF Source !

- Producing and measuring small beam emittance (1micron)
- Producing and measuring short Bunches (45microns)
- Preserving small beam emittance (very strict tolerances/requirements on the **beam position monitor precision and resolution**)
- Dumping the beam correctly

 $1\mathchar`$ Collect the beam instrumentation requirements for each CLIC sub-systems and identify Critical Items and the need for new R&D

- 2- Evaluate the performance of already-existing technologies
 - CLIC specific instruments
 - Luminosity monitors
 - CTF3 beam diagnostics importable to CLIC
 - ILC instruments with similar requirements as for CLIC
 - Laser Wire Scanner or Cavity BPM
 - Beam Delivery System instrumentation Ex: Polarization monitor, Beam Energy measurements
 - Damping ring instrumentation developed at ATF2

- 3rd and 4th generation light sources

- Damping ring instrumentation
- Bunch Compressor instrumentation very similar to XFEL projects
- Short bunch length and Timing synchronization

CLIC vs ILC – Light sources

			tor
	CLIC@ 3TeV	curays tigh	
Bunch Length in the Linac (fs)	ic are	S almas	900
Typical Beam Size in the Linac (or CLIC a	1	5
Beam Emittance H/V jurements	660/20	2400/25	104/40
Beam size at In Require	40/1	202/2.3	640/5.7

	CLIC linac	XFEL	LCLS
Beam Energy (GeV)	3000	20	15
Linac RF Frequency (GHz)	12	1.3	2.856
Bunch charge (nC)	0.6	1	1
Bunch Length (fs)	150	80	73

	CLIC DR	SLS	Diamond	Soleil
Beam Energy (GeV)	2.86	2.4	3	2.75
Ring Circonfrence (m)	493	288	561.6	354
Bunch charge (nC)	0.6	1	1	0.5
Energy Spread (%)	0.134	0.09	0.1	0.1
Damping times (x,y,E) (ms)	2,2,1	9,9,4.5	-	6.5,6.5,3.3
Orbit stability (um)	1	1	1	1

http://clic-study.web.cern.ch/CLIC-Study/

CLIC

http://www.linearcollider.org/cms/

CLIC vs CTF3

	CTF3	CLIC
Beam Energy (GeV)	0.15	2.4
RF Frequency (GHz)	3	1
Multiplication Factor	8	24
Initial Beam Current (A)	3.75	4.2
Final Beam Current (A)	30	100
Initial Pulse length (us)	1.2	140
Final Pulse Length (ns)	140	240
Total Beam Energy (kJ)	0.7	1400
Repetition Rate (Hz)	5	50
Average Beam Power (MW)	0.0034	70
Charge density (nC/cm ²)	0.4 10 ⁶	2.3 10 ¹⁰

The thermal limit for 'best' material (C, Be, SiC) is 10⁶ nC/cm²

- Still considerable extrapolation to CLIC parameters
- Especially total beam power (loss management, machine protection)
- Development of non-destructive instruments
- Stability and reliability : CTF3 not designed to address these issues

Beam Position Measurements with a 50nm resolution and adequate time resolution

Characteristics

- Narrow gap to be insensitive to the beam angle.
- Small aperture (beam tube) to keep the sensitivity.
- Separation of x and y signal. (Rectangular cavity)
- Double stage homodyne down converter.

	Design parameters			
Port	f (GHz)	β	Q ₀	Q _{ext}
X	5.712	1.4	5300	3901
Y	6.426	2	4900	2442

Results 15 nm position resolution!

LIC

ATF Collaboration : SLAC, KNU, PAL, KEK, JAI, UCL

Cavity BPM @ FERMILAB

Q

222.081

• Work in progress - Design finalized by October 2009 – Prototype 2010 ?

Design of Low-Q low cost cavity BPM (stainless steel)

CLIC

'yet another high resolution BPM'

CLIC

'yet another high resolution BPM'

Choke BPM

ШC

Slotted cavity BPM

Beam Size Measurement with a micron accuracy

Optimized to measure 20umx1um beam spot size

CLIC

Bunch length Measurement with a 30 fs resolution

Benchmarking EO at FLASH against LOLA

CLIC

Benchmarking EO at FLASH against LOLA

FLASH Free-electron laser FLASH

Physical Review Special Topics - Accelerators and Beams 12, 032802 (2009)

CLIC

W.A. Gillespie & co

Physical Review Special Topics - Accelerators and Beams 12, 032802 (2009)

CLIC

W.A. Gillespie & co

Science & Technology Facilities Council

Daresbury Laboratory

20-50fs timing synchronization

CLIC 3TeV – Numbers of devices

	Instrument	N ^o Devices			
	Intensity	316			
	Position	45242		Drive Be	
	Beam Size	902			
	Energy	216			
	Energy Spread	27		47155 dev	
	Bunch Length	212			
	Beam Loss/Halo	0			
	Beam Phase	240		a vet	
			- ne	cifieus	
			itors spo		
		C N	Ionito.		
/	Bea				

CLIC

Drive Beam 47155 devices

No Beam	
Instr	N ^o Devices
Intensity	311
Position	7579
Beam Size / Emittance	143
Energy	75
Energy Spread	23
Bunch Length	26
Beam Loss/Halo	4
Beam Polarization	23
Tune	8
Beam Phase	96
Luminosity	4
Wakefield monitor	142812

Main Beam

8292 devices + 142812 wakefield monitors

- For large scale distributed systems : > 100 (Position Loss Size)
 - Simplicity where possible and Standardisation
 - Cost effective
 - Maintainability
 - Robustness and Final working environment
 - Availability
 - Reliability

(LEP BPM reliability 99%, LHC Better ?)

- Electronic Standardisation
 - Single type of digital electronics acquisition card used for the maiority of I HC

Follow similar concept for CLIC

- <u>Elimination of cables</u>
- <u>Standardized Digital Acquisition on local crate with single connection via</u> <u>synchronous ethernet for timing/clock (White Rabbit – Javier Serrano)</u>
- <u>Radiation hardness ?</u>

S. Vilalte, J. Jacquemier, Y. Karyotakis, J. Nappa, P. Poulier, J. Tassan

Cheaper production

Numbers of devices

BEAM

INSTRUMENTATION

ACCELER. STRUCTURE (BRAZED DISKS)

RF LOAD

Courtesy of J. Osborne and A. Samoshkin

VACUUM

MANIFOLDS

MB QUAD

Reducing the Performance ?

CLIC

Simulation by E. Adli on DB decelerator performance

Simulation by E. Adli on DB decelerator performance

CLIC

N=3

- Still a lot to demonstrate but None of the devices looks unfeasible
 - Study of Beam loss monitoring just started
 - Complex and non standard Post-collision beam line
- Huge amount of devices (well-beyond what was already achieved in our field)
 - Still need input from Machine Protection/Operation to define the BI architecture
 - Dependability analysis needs to be performed Reliability, Availability, Maintainability and Safety
- Cost estimate and optimisation
 - Simplicity if applicable (not always compatible with tigh tolerances)
 - Standardization is a key concept
 - Gain in Mass production ?

Thanks for your attention

CLIC

Principle: Convert Coulomb field of e-bunch into an optical intensity variation <u>Encode</u> Coulomb field on to an optical probe pulse - from Ti:Sa or fibre laser

W.A. Gillespie & co

Single-shot Temporal Decoding (EOTD)

Work as just started

CLIC

- Plan to have functional specifications for the CDR by 2010
- For the Cost estimate
 - Choice of Technology (Cerenkov emission in Optical fiber, Ionization chambers, ...)
 - Investigation of Safety Integrity Level (Need for redundancy ?)

Thomas Otto & Sophie Mallows

9 GeV electron in QP: Dose

Beam loss monitors : Hardware development

Major complication: Two beams & Long train!

Exploitation of Cerenkov-radiation in optical fibres

- Based on DESY-Flash work
- 4^x2 fibres around vacuum chamber
- Short individual fibres for true 3D analysis Fast time response

Transverse and longitudinal information

Insensitive against E and B fields

Quite Radiation hard

Limited space requirement of monitor

Beam loss monitors : Hardware development

- Optical Fiber Sensor based on SiPM composed of SPAD Array.
- Two arms:

CLIC

- Reference fiber
- Composite fiber with different losses (~0.45dB)

Features:

- Optical fiber diameter: 1mm² as the dimensions of SiPM active surface.
- Numerical aperture of fibers between 0.22 and 0.63.
- Pure silica and PMMA multimode step index fibers with n = 1.46.
- SiPM recovery time ca. 4 ns. (~ better than PMT)
- SiPM quantum efficiency 15 % in the blue wavelength range

Post collision line

A. Ferrari, V. Ziemann – ?E. Gschwendtner – K. Elsener

Complex and non-standard beam line

- Luminosity monitors based on beamstrahlung photons detection
- Intensity monitors
- Interferometric dump thermometer
- Tails monitors and/or instrumented collimators

Intro: ILC Beam Instruments

• ~ 2000 Button/stripline BPM's (10-30 / 0.5 μ m resolution)

- ~ 1600 BLM's
- Other beam monitors, e.g. toroids, bunch arrival / beam phase monitors, wall current monitors, faraday cups, OTR & other screen monitors, sync light monitors, streak cameras, feedback systems, etc.
- Read-out & control electronics for all beam monitors