

The CLIC Main Beam RTML

Overview

- Main Systems and Beam Dynamics Challenges i.e. Bunch Compressor 1, Booster Linac, Vertical Transfer, Long Transfer Line, Turn Around Loop, Spin Rotator, Bunch Compressor 2
- Integrated Simulations
 i.e. from entrance of BC1 to exit of BC2
- → RTML @ CLIC500
- ➔ Future Plans

not shown: Diagnostics, Collimation, Coupling Correction, Dispersion Correction, Spectrometers and Dumps

The RTML has to:

- transport the beams to the outer ends of the site
- match incoming beam parameters to main linac requirements
- → guarantee acceptable jitter level, e.g. via feedback (and feed-forward)
- characterize the pulses (or even individual bunches)

Property	Symbol	Value	Unit
Electron energy	E ₀	2.86	GeV
Bunch charge	Q_0	0.65	nC
Bunch length	$\sigma_{_{ m S}}$	1400	μm
Total energy spread	$\sigma_{\rm E,tot}$ /E $_0$	0.1	%
Normalized emittance	<i>E</i> _{n,x}	500	nm rad
	<i>E</i> n,y	5	nm rad

@ Exit of Damping Rings

Property	Symbol	Value	Unit
Electron energy	E ₀	8	GeV
Bunch charge	Q_0	>0.6	nC
Bunch length	$\sigma_{\!\scriptscriptstyle m S}$	44	μm
Total energy spread	$\sigma_{\rm E,tot}$ /E $_0$	<1.5	%
Normalized emittance	<i>E</i> _{n,x}	<600	nm rad
	<i>E</i> n,y	<10	nm rad

@ Entrance of Main Linac

Bunch Compressor 1 (new)

To improve performance of BC1:

- → longer final bunch (reduces CSR in all beam lines up to BC2)
- larger than necessary energy chirp (under-compression), i.e. less R₅₆ => less CSR (the induced chirp would allow a compression to 200 μm)

Booster Linac

by D. Wang

4 GHz, 5.14 GV (or 6.14 GV)

E ₀	2.86	GeV
$\sigma_{\!\scriptscriptstyle m S}$	400	μm
$\sigma_{\rm E,unc}$ / E_0	0.35	%
1/E ₀ dE/ds	-15.2	1/m
$\sigma_{\!E,\mathrm{tot}}$ /E $_0$	0.7	%

E ₀	8 (9?)	GeV
$\sigma_{\! m s}$	400	μm
$\sigma_{\rm E,unc}$ / E_0	0.13	%
1/E ₀ dE/ds	-5.42	1/m
$\sigma_{\rm E,tot}$ / E_0	0.25	%

Optimized with respect to wake fields and impact of misalignment

- → FODO lattice with 30 m average beta function
- 12 m of cavities between two quadrupoles, other schemes were also investigated and show similar performance
- → 240 m total length
- → due to the long bunches a non-negligible RF curvature is induced

Vertical Transfer

CSR is expected to be the main challenge. We hope that due to the long bunches (400 μ m) it is mitigated. But this needs to be confirmed!

Long Transfer Line

by B. Jeanneret

21 km FODO lattice, very weak quadrupoles ($k_1 < 0.01 \text{ } 1/\text{m}^2$)

- huge average beta function, >600 m
- \rightarrow low k_1 helps to suppress chromatic dilutions
- → utilizes a large beam pipe of 10 cm diameter to reduce resistive wall wakes
- fast beam ion instability is an issue, vacuum level of 0.1 nTorr required (G. Rumolo)
- magnetic stray fields are being investigated (J. Snuverink)

Turn Around Loop

Turn Around Loop

The turn around loop profits from the new compression scheme in two ways:

- → CSR was already small and is now really negligible
- the energy spread is smaller,
 - i.e. chromatic errors of the quadrupoles are weaker

The only challenge left is ISR:

- ISR in the turn around loop was the motivation to reduce the electron energy after the booster linac to 8 GeV
- → but main linac would have to start 1 GeV earlier, which is unfavorable
- Optimization has to be done

We hope to be able to use the ILC Spin Rotator as a basis and adapt it to the CLIC parameters. But this needs to be confirmed!

Bunch Compressor 2 (new)

To improve performance of BC2:

- ➔ utilize double chicane
- → reduce bend angles where bunches are shortest, i.e. less CSR
- → gain a lot flexibility to adapt to different parameter sets
- → due to longer initial bunches less RF required, i.e. less wake fields

Integrated Simulations (old)

- In the simulations BC1, booster linac, long transfer line, turn around loop and BC2 are connected by simple optics matching sections.
- → ISR, wake fields and chromatic effects lead to an emittance growth in the horizontal plane of $\Delta \varepsilon_{n,x} = 50$ nm rad (Elegant) and $\Delta \varepsilon_{n,x} = 60$ nm rad (Placet).
- → If only CSR is considered the emittance growth is $\Delta \varepsilon_{n,x}$ = 200 nm rad (Elegant).
- → Emittance in the vertical plane is always unchanged.

Integrated Simulations (new)

Since the CSR induced emittance growth was unacceptably large the bunch compression system had been revised:

- Iess compression in BC1
- → two BC2 chicanes with different R_{56} (single RF)
- → reduced CSR emittance growth to $\Delta \varepsilon_{n,x}$ = 20 nm rad (Elegant)
- ➔ but now the booster linac induces non-negligible RF curvature
- this must be taken into account in the setup of BC2 RF and chicanes, otherwise the final bunch length would be too large, i.e. larger energy chirp but less R₅₆ required (values on previous slides are ideal values and not corrected according to the impact of RF curvature or wake fields)

RTML @ CLIC500

	3 TeV	500 GeV
Bunch charge	0.65 nC	1.2 nC
Initial bunch length	1400 μm	1400 μm
Final bunch length	44 µm	~70 μm
Emittance budget x	100 nm rad	500 nm rad
Emittance budget y	5 nm rad	5 nm rad

RTML specifications are the same for nominal and conservative parameter sets.

- Doubling the charge is a major issue.
 But longer final bunch and larger horizontal emittance budget help.
- An RTML which is suitable for the 3 TeV case (normal charge) could also be suitable for the 500 GeV case (double charge).
- No upgrade would be required, neither from conservative to nominal parameters nor from 500 GeV to 3 TeV. This is used as a design objective. (Clearly, the length of the long transfer line has to be adjusted, but this is of minor importance for beam dynamics.)
- → In the old layout CSR emittance growth was unacceptable ($\Delta \varepsilon_{n,x}$ = 800 nm rad), but the new layout seems to be promising!

- First simulations of the new RTML are very promising, they will be refined and all important effects, i.e. ISR, CSR and wake fields, will be taken into account.
- To mitigate RF curvature in the booster linac we will check if it is possible to compress in BC1 to 300 μm.
- → Simulate RTML for 500 GeV parameters.
- Explore tolerances on static and dynamic imperfections and their mitigation including misalignment, magnetic field errors and stray fields, jitter of incoming beam parameters.
- ➔ Evaluate vacuum requirements.
- Study requirements for feedback and feed-forward system.
- The lattice of the turn around loop is not optimal and should be revised, but for the moment it seems to be acceptable.
- \rightarrow We need to study the vertical transfer and the spin rotator.