CLIC DRIVE BEAM FREQUENCY MULTIPLICATION SYSTEM DESIGN

C. Biscari, D. Alesini, A. Ghigo, F. Marcellini, LNF-INFN, Frascati, Italy B. Jeanneret, CERN, Geneva, Switzerland

23 June 2009 – ILC-CLIC Beam Dynamics Workshop - Geneve

CLIC Layout 3 TeV (not to scale)

Beam temporal structure along the frequency multiplication system

FMS layout

May 09

FMS layout

June 09

Main parameters of the rings

DL against TA

DELAY LOOP

 $L = 73 m$ Total bending angle = 2π Low number of elements 1 rf deflector

TURN AROUND

2 rf deflectors

Low element density Lower T566 (-35, sext off) Better tunability

Energy loss per turn (Incoherent Synchrotron Radiation)

From 1 turn to 7.1 turns: energy loss from 0.42 to 3 MeV

Spread between the minimum and maximum lost: ∆E/E ~ 0.1 %

Delay loop – full of dipoles – ρ **= 4.7 m**

CLIC CR1 and TA– similar to CTF3 CR

INJECTION or EXTRACTION

In TurnAround Loop dipoles bend 33° instead of 30°

Turn Around Loop – same isochronous arc of CR

ADDING a Dquad between the rf deflector and the septum

The odd and even bunches are separated and vertically focused on the septum position

DL injection - extraction region

1°combiner ring

2°combiner ring

Tracking 6d particle distribution along fms

Optimisation of 2°order chromaticity terms – work in progress

•Beam energy spread is the parameter mostly influencing the three phase spaces.

•Correcting the 2° term isochronicity by sextupoles can be harmful for the transverse planes.

•Up to ± 1% of energy spread 3 emittances are easily preserved.

•Particles with higher energy deviations can be lost transversely when sextupoles are not carefully optimised

 $Dp/p = 1\% \rightarrow 3.5 \text{ mm}$

MAD X

Correction for CR1 : one sextupole family $T566 = 0$ $Q'x = -9.8$ sext off, and -2.1 sext on $Q'y = -10.4$ sext off, and -13.6 sext on $Δβ/β < 0.22$ for 2% of δp.

Tracking particles of amplitudes $A_{x,y}$ = 1,2,3 $\sigma_{x,y}$ evenly spaced in phase and covering the momentum range \pm 2% over three turns: •no significative deformation of the vertical phase-space •the horizontal phase-space is preserved up to $δp = ±1.2$ %

• Qualitatively and quantitatively same results of Madx, but with different sextupole strengths

Figure 2: The results of the turns tracking through CR1. Four upper pictures: the functions $h(\delta_p)$ defined in the text for the four canonical transverse phase-space variables x, px, y, py. Down right: the extrema of the 1σ deformed phase-space (red) at δ_p observed in the tracking data which are used to construct the h functions, compared to the nominal (blue) phase-space ellipse (σ_x, σ_{px}) . Down-left : the residual ct error with δ_p . The red-curve is an eye-fit mixing of polynom with 3^{rd} and 4^{th} terms.

$$
h_{x+}(\delta_p) = [x_{\max}(\delta_p) - x_{av}(\delta_p)] / \sigma_{\beta,x}
$$

\n
$$
h_{x-}(\delta_p) = [x_{av}(\delta_p) - x_{\min v}(\delta_p)] / \sigma_{\beta,x}
$$

\n
$$
h_{x0}(\delta_p) = x_{av}(\delta_p) / \sigma_{\beta,x}
$$

MadX – mad8

- Different values for chromaticity evaluation
- 2° order longitudinal correction slightly different

Use ctf3 combiner ring as benchmark:

Apply sextupole corrections for bunch length and chromaticity optimisation Measurements of bunch length and of beam emittances in TL2

RF deflectors

Deflector Frequencies

Delay Loop:

- $f = f_{\text{linear}}/2$ (2n+1), n=0,1,2,...
- f = 0.5 GHz, 1.5 GHz, 2.5 GHz,…

Same rule for CR2 (recombination factor $m = 4$):

 $f = 3$ GHz, 6 GHz,...

COMB RING 1

DEFLECTING FIELD EXCITED BY THE BEAM IN RF DEFLECTORS (1/2)

Unwanted deflecting field can be **excited by the beam if the pass offaxis** into the deflectors both in the horizontal than in the vertical plane.

This is due to the fact that the **deflecting field has longitudinal electric field** off-axis.

This happens, in the **horizontal** plane, even in the case of purfect injection and both in the DL than in the CR RF deflectors.

In the **vertical plane there is beam loading only in case of a non-perfect steering** of the orbit inside the structure.

WAKEFIELD INDUCED BY THE VERTICAL MODES (3/3)

TRACKING CODE RESULTS

-The tracking allows studying the **distribution of the Courant-Snyder invariants (Iout)** for all bunches and its dependence on the resonant mode properties and ring optical functions.

TRACKING CODE RESULTS: key parameters to reduce the instability

Choice of ring tunes and phase advances

- Rf deflectors loading : Qx far from integer, Qy near half integer
- Misalignment errors and beam loading: Qx, Qy far from integer

• In progress simulations for CLIC fms (David will present them in CLIC workshop 09)

Conclusions

- FMS Layout and first order optics defined: two different possibilities for 1° ring
- 2°order chromaticity compensation in progress -> may require 1°order optics modifications, assured by system tunability
- Rf deflector main parameters defined
- Beam loading calculations in rf deflectors in progress-> may require rf deflectors parameters modifications

23 June 2009 – ILC-CLIC Beam Dynamics Workshop - Geneve