CLIC DRIVE BEAM FREQUENCY MULTIPLICATION SYSTEM DESIGN

C. Biscari, D. Alesini, A. Ghigo, F. Marcellini, LNF-INFN, Frascati, Italy B. Jeanneret, CERN, Geneva, Switzerland

23 June 2009 – ILC-CLIC Beam Dynamics Workshop - Geneve

CLIC Layout 3 TeV (not to scale)

Beam temporal structure along the frequency multiplication system

FMS layout

May 09

FMS layout

June 09

Main parameters of the rings

Parameter		DL	TA	CR1	CR2
L	m	73.05	146 + 73	146.09	438.28
Combination factor		2	2	3	4
RF deflector frequency	GHz	1.5	1.5	2.	3.
N of dipoles		12	12	12	16
ρ	m	4.7	4.7	4.7	12
В	Т	1.7	1.7	1.7	0.7
N of quadrupoles / families		18 / 9	44/17	48 / 9	64 + fodo quads
I _{q *} dB/dx max	Т	10	11	6	6

DL against TA

DELAY LOOP

L = 73 m Total bending angle = 2π Low number of elements 1 rf deflector

High element density Higher T566 (-55m, sext off)

TURN AROUND

L = 73 * 2 + 73 m Total bending angle > 10% High number of elements 2 rf deflectors

Low element density Lower T566 (-35, sext off) Better tunability

Energy loss per turn (Incoherent Synchrotron Radiation)

From 1 turn to 7.1 turns: energy loss from 0.42 to 3 MeV

Spread between the minimum and maximum lost: $\Delta E/E \sim 0.1$ %

Delay loop – full of dipoles – ρ = 4.7 m

CLIC CR1 and TA- similar to CTF3 CR

In TurnAround Loop dipoles bend 33° instead of 30°

Turn Around Loop – same isochronous arc of CR

ADDING a Dquad between the rf deflector and the septum The odd and even bunches are separated and vertically focused on the septum position

DL injection - extraction region

1° combiner ring

2° combiner ring

Tracking 6d particle distribution along fms

Optimisation of 2° order chromaticity terms – work in progress

•Beam energy spread is the parameter mostly influencing the three phase spaces.

•Correcting the 2° term isochronicity by sextupoles can be harmful for the transverse planes.

•Up to \pm 1% of energy spread 3 emittances are easily preserved.

•Particles with higher energy deviations can be lost transversely when sextupoles are not carefully optimised

Dp/p = 1% -> 3.5 mm

	ТА	CR1	CR2
T566 sext off	-34.6	-19.2	-13.4
T566 sext on	-4.4	-0.6	0.2
T166 sext off	-42.	-4.5	22.6
T166 sext on	5.8	-0.5	-48.

MAD X

Correction for CR1 : one sextupole family T566 = 0 Q'x = -9.8 sext off, and -2.1 sext on Q'y = -10.4 sext off, and -13.6 sext on $\Delta\beta/\beta < 0.22$ for 2% of δp .

Tracking particles of amplitudes $A_{x,y} = 1,2,3 \sigma_{x,y}$ evenly spaced in phase and covering the momentum range \pm 2% over three turns: •no significative deformation of the vertical phase-space •the horizontal phase-space is preserved up to $\delta p = \pm 1.2 \%$

 Qualitatively and quantitatively same results of Madx, but with different sextupole strengths

Figure 2: The results of thee turns tracking through CR1. Four upper pictures : the functions $h(\delta_p)$ defined in the text for the four canonical transverse phase-space variables x, px, y, py. Down right: the extrema of the 1σ deformed phase-space (red) at δ_p observed in the tracking data which are used to construct the h functions, compared to the nominal (blue) phase-space ellipse (σ_x, σ_{px}) . Down-left : the residual ct error with δ_p . The red-curve is an eye-fit mixing of polynom with 3^{rd} and 4^{th} terms.

$$h_{x+}(\delta_p) = [x_{\max}(\delta_p) - x_{av}(\delta_p)] / \sigma_{\beta,x}$$

$$h_{x-}(\delta_p) = [x_{av}(\delta_p) - x_{\min v}(\delta_p)] / \sigma_{\beta,x}$$

$$h_{x0}(\delta_p) = x_{av}(\delta_p) / \sigma_{\beta,x}$$

MadX – mad8

- Different values for chromaticity evaluation
- 2° order longitudinal correction slightly different

Use ctf3 combiner ring as benchmark:

Apply sextupole corrections for bunch length and chromaticity optimisation Measurements of bunch length and of beam emittances in TL2

RF deflectors

Deflector Frequencies

Delay Loop:

- $f = f_{linac}/2 (2n+1), n=0,1,2,...$
- f = 0.5 GHz, 1.5 GHz, 2.5 GHz,...

Same rule for CR2 (recombination factor m = 4):

f = 3 GHz, 6 GHz,...

COMB RING 1

	a (11111)	L (III)	IN	t _f [IIS]	v _g /C			
1	42	1.7	17	379	-0.016	0.04	44	9.6e5
2	21	0.9	18	192	-0.016	0.1	60	3.7e6
4	18	0.6	24	136	-0.014	0.34	117	9.8e6

DEFLECTING FIELD EXCITED BY THE BEAM IN RF DEFLECTORS (1/2)

Unwanted deflecting field can be *excited by the beam if the pass off-axis* into the deflectors both in the horizontal than in the vertical plane.

This is due to the fact that the *deflecting field has longitudinal electric field* off-axis.

This happens, in the *horizontal* plane, even in the case of *r* arfect injection and both in the DL than in the CR RF deflectors.

In the vertical plane there is beam loading only in case a non-perfect steering of the orbit inside the structure.

WAKEFIELD INDUCED BY THE VERTICAL MODES (3/3)

TRACKING CODE RESULTS

-The tracking allows studying the *distribution of the Courant-Snyder invariants (l_{out})* for all bunches and its dependence on the resonant mode properties and ring optical functions.

TRACKING CODE RESULTS: key parameters to reduce the instability

Choice of ring tunes and phase advances

- Rf deflectors loading : Qx far from integer, Qy near half integer
- Misalignment errors and beam loading: Qx, Qy far from integer

• In progress simulations for CLIC fms (David will present them in CLIC workshop 09)

Conclusions

- FMS Layout and first order optics defined: two different possibilities for 1° ring
- 2° order chromaticity compensation in progress -> may require 1° order optics modifications, assured by system tunability
- Rf deflector main parameters defined
- Beam loading calculations in rf deflectors in progress-> may require rf deflectors parameters modifications

23 June 2009 – ILC-CLIC Beam Dynamics Workshop - Geneve