CLIC Drive Beam Decelerator

Beam transport: wake fields and alignment

ILC-CLIC LET Beam Dynamics Workshop

Erik Adli, University of Oslo and CERN, June 23th 2009

Each decelerator sector up to 1 km long (one 1 km sector simulated)

Power extraction

12 GHz PETS (for Two-beam Test Stand experiments)

CLIC Module (with up to 4 PETS)

The effect of deceleration

Energy profile of the Drive Beam at the end of a Decelerator Sector

(short transient + long steady-state)

Special requirement: we have to transport particles over the whole energy range

Focusing strategy

- Tight FODO focusing (large energy acceptance, low beta)
- Lowest energy particles ideally see constant phase-advance μ≈90°
- Higher energy particles see phase-advance varying from $\mu \approx 90^{\circ}$ to $\mu \approx 10^{\circ}$ (towards the end of the lattice)
 - Perfect machine and beam : high energy envelope contain in low energy envelope
 - Energy acceptance (e.g. of generated halo particles) only -3% of E₀ at the entrance; but increasing along the lattice
 - Implies that each of the (~ 40'000) quadrupoles should ideally have a different gradient

Envelope growth in an ideal machine

metrics: $y_c = \sqrt{(εβ)}$, $r_c = max_{beam} \sqrt{(εβ)}$

E_{Least dec}: $y_c = \sqrt{(\epsilon \beta(s))} \sim beta_{final} / beta_0$ E_{most dec}: $y_c = \sqrt{(\epsilon(s)\beta)} \sim \sqrt{\gamma_i/\gamma_f}$

Transport challenges

Requirement: robust transport of particles of *all* energies Criterion: 3σ of any slice of the beam must be within $\frac{1}{2}$ a_0

Challenges:

- I) Machine misalignment
- II) PETS wake fields

The PETS induced energy spread: a curse for I) and a blessing for II)

Wake field amplification

PETS impedance

(Time-domain simulations with GdfidL: I. Syratchev)

Large amplitude broad modes as well as high Q cavity modes - spectrum shown is exactly what is simulated with PLACET

Some estimations of dipole wake amplification

The amplification along a constant energy offset beam can be calculated analytically, assuming point-like bunches (PLB)

[D. Schulte, Multi-bunch calculations for the CLIC min linac], adapted for the decelerator

basic physics: trailing particle is driven on resonance, resulting in linear amplitude growth

Growth due to direct effects:
$$a_{jk} = i \sum_{n=1}^{N} \underbrace{\frac{L_{\text{PETS}} \sum_{l=1}^{9} W_{T,l}'(z_k - z_j) \beta^*(s_n) q_k e}{2E_j(s_n)}}_{2E_j(s_n)}$$

Indirect effects: [D. Schulte]
$$\lim_{m \to \infty} (1 + \frac{\mathbf{a}}{m})^m = e^{\mathbf{a}} = \Sigma_{k=0}^{\infty} \frac{\mathbf{a}^k}{k!} = \Sigma_{k=0}^{N-1} \frac{\mathbf{a}^k}{k!} \equiv \mathbf{A}$$

Final bunch offset wrt. initial bunch offset for a long line can then easily be calculated

$$\mathbf{y}_f = \mathbf{A}\mathbf{y}_i$$

Analytical estimations of wake amplification

Instructive as starting point: calculation (and simulation) for point-like bunch trains experiencing most and

E [GeV]

least deceleration

(but here same E for all bunches):

$$\Sigma \frac{1}{\beta(s_n)}$$

$$\int_{0}^{L} ds \frac{1}{\gamma} = \frac{L}{\gamma_{\text{final}} - \gamma_{0}} \ln \frac{\gamma_{\text{final}}}{\gamma_{0}}$$

Decoherence "for free" in transient

Bunch-to-bunch energy difference results in strong de-coherence. Thus, a BNS-like effect saves us, by "pushing the transient into the steady-state part, where the PETS induced energy spread is large

Full simulation (long bunches)

Single-bunch effects aggravates the situation in the transient for the "slow PETS", and also leads to amplification of factor ~2 in the steady-state

Conclusion: sufficient de-coherence at train head is needed for a robust PETS design

 $Q_2 - Q_1 > \sim 2.5$ seems to be a good rule of thump

Intrinsic energy spread (not included here) mitigates the situation, however changes in transverse modes might aggravate the situation

Summary of PETS wake analysis

Amplification of centroid motion, r_c , for each dipole mode (beam jittered at mode frequency)

Amplification of total beam envelope, r, jitter on all mode frequencies (1 σ jitter in total)

For the CLIC decelerator PETS baseline parameters provide adequate mitigation of the dipole wake, but the margin is small

Machine misalignment

Orbit correction

Simple steering into the centre of the BPM (1-to1) gives relatively large residual beam envelope (even with BPM accuracy of 20 μ m and one BPM per quad)

Standard simulations: 100 machines, while we want 99.98% of machines to work (48 decelerators to work together, 99.98%)

Result of 1-to-1 correction

- Low energy centroid is confined to some 10 μm
- Residual kicks in quadrupoles drive dispersion
- Different energy particles: large dispersive trajectoris

Dispersion-free correction

Dispersion-free correction takes out dispersion and drives the whole beam very close to the BPM centres

NB: correction strategy is to first perform 1-to1 then DFS

Result of dispersion-free steering

Dispersive errors reduced to almost zero

DFS: test-beam generation

By adjusting the switching of the drive beam linac buckets, one can generate the test-beam in the

same pulse as the nominal beam

Delayed Switching

before first RF-deflector

after second RF-deflector

even buckets

Example of DFS beam generation scheme: Of the 12 initial E+O pulses:

- First 3: nominal E+O recombination
- Next 3: Delay swithing to ~half of O buckets
- Next 3: nominal
- Last 3: Delay switching

- Advantages with this method :
 - quadrupole strengths are kept constant machine unchanged
 - main-beam and test-beam can be combined in one pulse
 - Large energy-leverage , almost insensitive to DFS weigth over 4 O.M.

(The example scheme above might not be optimal wrt. BPM readings → to be investigated further)

Specifications resulting from wake field and correction works

Tolerance limits for each machine misalignment for each misalignment specified by requiring envelope growth of max. r_c < 1mm originating this misalignment alone

- We remind of the confidence required p_{sector}>99.98%
- Cannot simulate enough machines to test this statistically, so we investigate the tail of the the accumulated distribution of the machine envelopes, r

By adopting BPM precision $\sim 2~\mu m$ we ensure minimal envelope growth with respect to the minimum possible, taking into account effects of transverse wake fields

Tolerance	Value	Comment
PETS offset	100 μm	r _c < 1 mm fulfilled
PETS angles	~ 1 mrad	r _c < 1 mm fulfilled
Quad angles	~ 1 mrad	r _c < 1 mm fulfilled
Quad offset	20 μm	Must be as small as possible. 20 μ m is within spec. of alignment system (r_c < 1 mm \Rightarrow quad offset of 1 μ m)
BPM accuracy	20 μm	Must be as small as possible.
BPM precision	~ 2 μm	Suppresses significant tails in distribution of envelopes

Conclusions

- The Beam Dynamics studies have found solutions to the main challenges of the CLIC Drive Beam Decelerator the wake fields and alignment
- Study has been tight integration Bead Dynamics and RF people
- First experimental results (DFS in CTF3, beam in TBTS PETS)
 gives good confidence in simulation studies
- Not studies in detail (yet):
 - Space Charge, γ_{but}~500, but I~40 kA -> direct SC few % effect on transverse focus spread (small wrt. to PETS induced spread) Further study would profit from inclusion of space charge in PLACET
 - Vacuum tolerances (Ion effects), for the moment being implemented in PLACET (G. Rumolo, B. Dalena), se also next talk by M. Fitterer
 - Halo generation and tracking: se next talk by M. Fitterer

The end (extra)

Effect on reducing number of BPMs

(perfect BPMs and single machine simulated, for illustration purposes)

Total effect – quad rms 20 μm

Total effect – quad rms 100 μm

Equipping only every 2nd BPM puts harder limits on alignment