Draft Beam Physics Worklist

D. Schulte

ILC-CLIC Beam Dynamics Workshop June 25, 2009

Drive Beam

- Many system need to taken care of
- Make your choice
- Fast amplifier for phase feedback
 - some resemblance with IP intra-pulse feedback amplifier

Deliverables of Beam Physics

- Performance specifications of machine components
- Studies evidencing that these specifications achieve the target performance
- This requires
 - machine design
 - dvelopement of beam-based tuning and alignment methods
 - conceptual beam-based feedback design
 - code development
 - . . .
- Types of specifications
 - some can be easility specified, e.g. BPM resolution
 - but still they can depend on complex studies
 - some are not easily specified, e.g. long-distance pre-alignment
- Will first introduce activities on low emittance preservation

Ring To Main Linac (RTML)

- Static imperfections are more severe in ILC than anticipated
 - need to check for CLIC
- Dynamic imperfections can be important
 - e.g. time-varying stray fields
 - measurement campain needed
- Is important for integrated dynamic studies
 - e.g. bunch compressor timing jitter
- Many important systems, would like help on
 - design of spin rotator
 - design of vertical transfer
 - evaluation of collimation system
 - design of diagnostics systems (e.g. bunch length measurement, emittance measurement,...)
 - review of turn around loop
 - design of intermediate dump lines and spectrometer
 - performance evaluation and beam.beased alignment and tuning

Main Linac (ML)

- Lattice design exists
- Alignment tolerances
 - different methods exist
 - specifications exist
 - completion of calculations, in particular long-distance misalignments
 - verification of results by independent study
 - agreed to send around specific machines
- Vacuum level
 - difficult to achieve better than 10ntorr in ML
 - potentially severe problem with fast beam-ion instability
 - work on confirming that 10ntorr is OK
 - developed a simulation code
 - is a confirmation possible

Beam Delivery System (BDS)

- Solenoid field configuration
 - critical because of strong interaction with experiments
 - prove that beam qualityy is preserved
 - requires choice of compensation scheme
 - collaboration appears possible
- Adjustment for energy scan
 - several percent required experiments
 - need solution for permanent magnet
 - need to check proposed solution
 - will be addressed at CERN
 - result expected soon
- Performance of collimation system needs evaluation
 - efficiency and required efficiency
 - will be addressed mainly by Javier (anybody else?)

Beam Delivery System (cont.)

- Beam-based alignment and tuning of BDS is difficult
 - important for static tolerances
 - also important impact on some dynamic tolerances
 - have some method but not yet satisfying performance 80% of the cases yield 80% of the luminosity, while we want 90% to yield 90% method is slow ($O(10^4)$ iterations), potentially some minute per iteration
 - try to improve method
 - will test method in ATF2 (maybe end 2010)
- Feedback layout is required
 - controller difficult, e.g. target dispersion
 - conceptual feedback layout this year

Beam Delivery System (cont.)

- General review
- System optimisation
- Crab cavity phase stability
 - work in the UK
- Collimator design
 - material and mechanics
 - wakefields
 - impact on beam
- Luminosity tuning
- Laser wires
- IP intra-train feedback

Post Collision Line

- Conceptual layout exists
 - improvements are useful
 - polarisation measurement
 - measurement of beamstrahlung, coherent pairs, spent beam
- Loss studies for machine protection
- Background studies for the detector
- Instrumentation for luminosity tuning

Dynamic Imperfections and Feedback Studies

- Most critical remaining area
- Integrated view essential
 - e.g. RF phase stability
- Many imperfections
 - ground motion, vibrations, RF phase and amplitude jitter in drive beam, beam charge jitter in damping ring, stray fields
 - need realistic model
- RF phase and amplitude stability
 - very tight tolerance on both
 - dominated by phase and amplitude stability of drive beam
 - need good imperfection models, e.g. klystron stability
 - develop reference drive beam phase and amplitude feedback concept
 - study performance and determine tolerances
 - resources are tight

Dynamic Imperfections and Feedback Studies (cont.)

- Orbit feedback
 - relatively tight tolerances, requiring mechanical stabilisation
 - modelling of vibrations, amplification by supports/beam line elements, of mechanical feedback
 - stray fields
 - estimation of slower variations
 - integrated imperfections model, soon after data is received
 - design of conceptual feedback
 - study of feedback performance
 - feedback optimisation
- Feedback work needs to be performed in a very close loop of hardware and beam physics

Codes

- Benchmarking of codes
- Common theoretical understanding
- Fast collimator wakefields