
 1

COherent Multibunch Beam-Beam Interaction
X. Buffat, J. Barranco, T. Pieloni, C. Tambasco

 Physics model
 Code implementation
 Typical usage
 Performance
 Documentation
 License
 Future plans

 2

Physics case
 Two conter rotating beams

collide in few interaction points
Example : CERN's Large
Hadron Collider :

 3

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches

Example : CERN's Large
Hadron Collider :

 4

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 5

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 6

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 7

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 8

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 9

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 10

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 11

Physics case
 Two conter rotating beams

collide in few interaction points
 Each beam is composed of

several bunches
 The bunches collide mutliple

times each turn

Example : CERN's Large
Hadron Collider :

 12

Physics case
 The Beam-beam force

 depends on the bunch parameters
 is highly non-linear
 couples all bunches together

 Many different oscillation mode
 Interplay with other effects

 13

Actions

 Linear transport (6D, with chromaticity, linear bucket)

 Head-on collision (HFMM 4D, FPPS 4D, soft-Gaussian 4-6D)

 Long range collision (soft-Gaussian 4D)

 Noise source (white / colored)

 Collimator (”in or out ” model)

 Impedance (equidistant slices and wake tables)

 Linear detuning (e.g. due to octupole)

 Transverse feedback (perfect, ADT-like)

 Synchrotron radiation (damping, quantum excitation)

 ...

 14

Impact on CERN machines
Colliding beam stability

 Simulation of
coupled bunch -
coupled beam
instability of two
trains of 36
bunches colliding
long-range

Spacial eigen-vector from SVD of turn by turn data :

Feedback on Observation of coupling
instability of colliding
beams in the LHC,
damped by the transverse
feedback in agreement
with COMBI simulations

Feedback off

 15

Impact on CERN machines
Beam transfer function

 Beam transfer function
measurements are used as a
diagnostic tool to quantify
Landau damping

 Can simulate complex
features that are not
accessible with the analytical
models (e.g. chromaticity,
distorted particle
distributions)

C. Tambasco

 16

Impact on CERN machines
Emittance effects

 Noise on colliding beams generates
an important emittance growth

→ specification for HL-LHC crab
cavities

→ specification for PC ripple, ground
motion tolerance, etc (HL-LHC, FCC-hh)

 Can simulate complex
features that are not
accessible with the analytical
models (e.g. 2nd order effects,
tune effects, chromaticity, …)

 Identify other observables to
test the models

 Solver noise is critical for this
type of study

ΔGauss=
2π ξ

√Nmacro

 17

Impact on CERN machines
Emittance effects

0.30 / 0.32 mirrored

 Noise on colliding beams generates
an important emittance growth

→ specification for HL-LHC crab
cavities

→ specification for PC ripple, ground
motion tolerance, etc (HL-LHC, FCC-hh)

 Can simulate complex
features that are not
accessible with the analytical
models (e.g. 2nd order effects,
tune effects, chromaticity, …)

 Identify other observables to
test the models

 Solver noise is critical for this
type of study

ΔGauss=
2π ξ

√Nmacro

 18

Impact on CERN machines
Emittance effects

0.30 / 0.320.30 / 0.32 mirrored

 Noise on colliding beams generates
an important emittance growth

→ specification for HL-LHC crab
cavities

→ specification for PC ripple, ground
motion tolerance, etc (HL-LHC, FCC-hh)

 Can simulate complex
features that are not
accessible with the analytical
models (e.g. 2nd order effects,
tune effects, chromaticity, …)

 Identify other observables to
test the models

 Solver noise is critical for this
type of study

ΔGauss=
2π ξ

√Nmacro

 19

Head-on and long range beam-beam interactions
Soft-gaussian approximation (4D)

 Need to solve Poisson equation in 2D (open boundary) twice per
interaction per turn (i.e. efficiently): several methods exist

 Compute first order moments of the distribution and compute the field
based on a Gaussian distribution :

 Fastest and most precise solver,
yet it is not accurate especially
for non-Gaussian beams

 Used to compute long-range
beam-beam interactions since
the dependency on the details of
the beam distribution is less
critical

 Sufficient for most coherent
stability studies

Δ x '=
−2r0 N

γr

x

r2
(1−e

−r2

2 σ
2

)

Self-consistent field solver

Soft-Gaussian approximation

Head-on beam-beam interaction
Fast Multipole Method (4D)

 Group far particles and approximate the kick with a multipolar expansion :

F=∑
i=0

N
a
ri

F≈∑
i=0

M bi

Ri

≈

 Smart bookkeeping allows to do reduce the complexity from O(N2) to O(N)

 Accurate (≠precise) for any type of distribution

 Still quite slow for large particle density, especially when the beams are slightly separated

 In a parallel implementation, the position and charge of all particles have to be exchanged
between processes, could be slow in clusters without shared memory

 21

Head-on beam-beam interaction
Hybrid FMM (4D)

 Distribute the charge of the core on a rectangular mesh, to reduce the computing
time and the amount of data to be transfered

 Grid properties are set with preprocessor directives (need to recompile!)

 Initially designed for space charge, the HFMM was also used in BEAMX (single
6D beam-beam interaction)

 Working horse of COMBI, since it was heavily benchmarked against analytical
formulas, other codes (BeamBeam3D) and observations at RHIC and LHC

 22

HFMM maintainability

 The implementation of the HFMM is robust and fast for most
application, but is difficult to maintain and would require major
refactoring to be parallelisable (and probably wouldn't be efficient
anymore!)

 The quad tree algorithm is very efficient, but really noisy
 Shows a saturation of the noise level at large number of

macroparticle (>106) that is not compatible with present needs
 We (A. Florio) looked into possibilities to improve :

 Parallel version of the FMM, with a fixed grid (F2M2)
 Fast Polar Poisson Solver (FPPS)

 23

Head-on beam-beam interaction
Fast Polar Poisson Solver (4D)

 Distribute the charge on a polar mesh, solve Poisson on the
angular coordinate using the FFT and finite differences on the
radial coordinate

 Removes the need for copies as well as the artifacts
introduced with a FFT solver on a 2D Cartesian mesh

 Stretch the radial coordinate to simulate open-boundary
condition

 Fast, accurate and more precise
than the HFMM

 Trivial implementation of the
second level of parallelisation with
OpenMP

 Singularity at the center is not
trivial to handle

 24

Head-on beam-beam interaction
Soft-Gaussian 6D model

 Based on K. Hirata's BBC

→ Compute the weak-strong beam-beam kick for all particles,
taking the other beam's longitudinal slices' first order moments to
model the strong beam (soft-Gaussian)

 Note : A fully self-consistent 6D solver is implemented in BEAMX
(HFMM) and BeamBeam3D (FFT) → higher computing requirements

 25

Head-on beam-beam interaction
Soft-Gaussian 6D model

 Based on K. Hirata's BBC

→ Compute the weak-strong beam-beam kick for all particles,
taking the other beam's longitudinal slices' first order moments to
model the strong beam (soft-Gaussian)

 Note : A fully self-consistent 6D solver is implemented in BEAMX
(HFMM) and BeamBeam3D (FFT) → higher computing requirements

J. Barranco

 26

Head-on beam-beam interaction
Soft-Gaussian 6D model

 Based on K. Hirata's BBC

→ Compute the weak-strong beam-beam kick for all particles,
taking the other beam's longitudinal slices' first order moments to
model the strong beam (soft-Gaussian)

 Note : A fully self-consistent 6D solver is implemented in BEAMX
(HFMM) and BeamBeam3D (FFT) → higher computing requirements

J. Barranco

 27

Impedance

 A la HEADTAIL :
 Slice the bunch longitudinally (equidistant)

 Compute the charge and average positions of each slice

 Apply the kicks to trailing particles and trailing bunches based on the
wake function (wake table or resonator implemented in the development branch)

→ Requires long term (i.e. few turns) data storage and communication between
bunches → see later

 Only single kick per turn possible

 Benchmarked with HEADTAIL multibunch (N. Mounet)
(TMCI, coupled bunch instability rise times, octupole thresholds)

 28

Impedance

 A la HEADTAIL :
 Slice the bunch longitudinally (equidistant)

 Compute the charge and average positions of each slice

 Apply the kicks to trailing particles and trailing bunches based on the
wake function (wake table or resonator implemented in the development branch)

→ Requires long term (i.e. few turns) data storage and communication between
bunches → see later

 Only single kick per turn possible

 Benchmarked with HEADTAIL multibunch (N. Mounet)
(TMCI, coupled bunch instability rise times, octupole thresholds)

 29

Impedance

 A la HEADTAIL :
 Slice the bunch longitudinally (equidistant)

 Compute the charge and average positions of each slice

 Apply the kicks to trailing particles and trailing bunches based on the
wake function (wake table or resonator implemented in the development branch)

→ Requires long term (i.e. few turns) data storage and communication between
bunches → see later

 Only single kick per turn possible

 Benchmarked with HEADTAIL multibunch (N. Mounet)
(TMCI, coupled bunch instability rise times, octupole thresholds)

 30

Synchrotron radiation
 Full implementation (Based on S. White's):

 For each particle at each arc (or
each turn), compute the number of
photons emitted based on Poisson
distribution

 Compute each photon energy based
on probability density (analytical +
lookup table)

 Apply longitudinal and transverse
kicks

 Gaussian noise model (default)

 When several photons are emitted per arc (or per turn), the energy
loss per particle becomes Gaussian distributed

→ Apply averaged damping on all particles, with a single particle
Gaussian white noise (longitudinal and transverse) (based on either
the radiation integrals or the equilibrium emittance and damping time)

 31

Code implementation
 Some old (1987) routines are written in F77 (HFMM, BBC), the

newest features are implemented as C++ class (FPPS*)

 Most features are implemented in F90 or C
 The wrapping and the first level of parallelisation (MPI)

(→ combi.c, master.c, slave.c) is written in C

 Compiled and tested with gcc and icc only

 A second level of parallelisation based on OpenMP is
implemented in all functions (only where it offers a gain)

 Requires an implementation of MPI with the level of thread
support MPI_THREAD_FUNNELED (note: usually
MPI_THREAD_SINGLE still works, but no guarantees)

 The FPPS relies on FFTW3

* Pythonized version available in PyPIC

 32

Master and slave
initialisation

 At initialisation the process with ID 0 becomes the masters (combi.c → master.c)

 Reads input files (checks their integrity)

 Makes a mapping MPI ID to bunches, cancels unused processes

 Sends initialisation data to slaves and waits for return values of all slaves

 Do one test turn (check integrity, compute collision pattern, both the slave and the
master allocate the memory that they will need during the execution)

 Other process are slaves (combi.c → slave.c)

 Read input files

 Allocate memory for the beam (array of double representing 7 coordinates (6D phase
space + charge) of each particle

 Enter the 'while(1)' loop :

 Wait for an instruction from the master (action code, …)
 Execute (slave.c → Fortran / C / C++ functions)
 Send completion message

 33

Input

 *.in
 Name of other input files
 Select type of output and set output file names
 Machine and beam parameters

 *.fill
 Define the bunch configuration (i.e. filling scheme in the LHC)

 *.coll
 Define the list of actions representing the machine (equivalent to

the sequence in MAD, but for two interacting beams)

 34

First level of parallelization
 Usually, the number of bunches

is larger than available CPU per
node → MPI required

 1 master process
 1 slave process per bunch

 Both beams go through the
same sequence of action, but in
opposite direction

 It is the responsibility of the
user (with the help of few
helper output at initialisation)
to ensure the consistency
between the filling scheme
and the action sequence

... ...

b1
b2

b3

b1
b2

b3

Action 1
Action 2

Action 3

Action 2*N

Action 2*N-1

Master

 35

Comunication

b1

b2

b1

b2

Master
sends action

Action without
partner

A
ct

io
n

w
ith

 p
ar

tn
er

 36

Comunication

b1

b2

b1

b2

Master
waits

 37

Comunication

b1

b2

b1

b2

Master
listens to slaves,

moves on when ready

R
et

ur
n

 v
al

ue

R
et

ur
n

 v
al

ue

 38

Multibunch / multiturn
effects

 Some effects (now only the impedance → ADT features ?) requires memory of
the particle distribution of the different bunches over a some turns

→ A PassageRecord instance is created evey time a bunch reaches an
Impedance Action which contains :

 The absolute time of the interaction

 First order moments of the particle distributions (either per bunch or per longitudinal
slice)

 The PassageRecord is send to the master and forwarded to the slaves when
needed

 Each slave keeps in memory its own deque with PassageRecord of all other bunches

 Maximum length of the deque is set by the 'wake length' in input

 39

Typical setup
Study Nb

particle
per
bunch

Nb bunch
per beam

Nb slice
per
bunch

Nb
Turn

Nb of run
per scan

Preferred
field
solver

Run
time

Computation of
coherent beam-
beam mode
spectrum

104-105 1-104 1 104 1 HFMM Minutes
to
hours

Stability
threshold / Mode
coupling
instability

105-106 1-36 (-104)* 50-500 104-106 10-100 Soft-
Gaussian

Minutes
to days

BTF 104-106 1-36 (-104)* 1 104 50-100 Soft-
Gaussian
/ HFMM

Hours

Emittance
effect /
distribution
effects

> 106 1 (-104)* 1 > 106 20 FPPS /
HFMM

Days to
weeks

* The total number of bunches in the FCChh would be out of reach currently

 40

First level of parallelization
Performance

 Total number of actions to be performed ~
 Number of actions per bunch ~

... ...

b1 b2
b3

b1
b2

b3

Action 1Action 2

Action 3

Action 2*N

Action 2*N-1

Master

N bunch

N bunch
2

 41

First level of parallelization
Drawbacks

 No gain for actions requiring heavy processing
 Potentially large waste of resources (waiting processes)

 Flexibility in the action sequence is a requirement driven by
the different needs

... ...

b1 b2
b3

b1
b2

b3

Action 1Action 2

Action 3

Action 2*N

Action 2*N-1

Master

 42

Second level of parallelization
COMBI hybrid (COMBhy)

 No change on the first level of parallelization
 Parallelize loops using OpenMP

✗ Resources are wasted because
of the busy-waiting of idling MPI
processes

✗ Control of priorities at the OS
scheduler level is available in
COMBI (enable RTS) but it
requires privileges that are
usually not granted on a shared
cluster (use with care, even on your machine...)

✔ Simple implementation
✔ Many optimisation

features available in
OpenMP

 43

Second level of parallelization
COMBI with shared memory (COMBIsh)

 Requires major modification of the first level of
parallelization :

 Third type of process : helper
 Slaves and helpers have access to shared memory

(using POSIX memory mapping)

✔ No idling MPI process

✗ Complicated
implementation

✗ Work sharing algorithm
have to be implemented

 44

Second level of parallelization
COMBI with shared memory (COMBIsh)

 Requires major modification of the first level of
parallelization :

 Third type of process : helper
 Slaves and helpers have access to shared memory

(using POSIX memory mapping)

✔ No idling MPI process

✗ Complicated
implementation

✗ Work sharing algorithm
have to be implementedDisc

ontin
ued

 45

Performance
Study cases

 High waste (low perfromance with
first level of parallelization) :

... ...

b2 ...
bN

b2
...

Master

b1

b1

bN
b2 ...

bN

b2
...

Master

b1

b1

bN

Beam-Beam

Beam-Beam

Beam-Beam
Beam-Beam

Beam-Beam

Beam-
Beam

 Low waste (High perfromance
with first level of parallelization) :

 46

Performance
COMBhy – high waste config.

✔ ~95% of the code
seems parallelizable

✗ 23 bunches → 47 MPI processes
running on 48 CPUs, only 2 of
which are working at a time

→ Waste of resources still present

 47

Performance
COMBhy – high waste config.

 The waste of resource can
be mitigated by introducing
system calls that to lower the
priority of idling MPI process
with respect to processing
ones in the OS scheduler

 The gain is marginal in
absence of oversubsribtion
but otherwise significant

 Changing processes
priorities requires capabilities
that are not always granted

16 core HP blade 2.7 GHz with HT

 48

Performance

 The second level of
paralelisation offers a major
speedup wrt to the single
level only, both in the high
and low waste configurations

 The shared memory version
does not allow for a major
speedup in the high waste
configuration

 49

Solver performance
 The noise introduced by the field

solver is critical, especially when
studying slow emittance effects

 Estimated by executing it on a
random distribution for which an
analytical formula exists

 Average of several seeds

Δsolver=
⟨|k solver−k th|⟩

⟨|k th|⟩

 The best performing is the soft-Gaussian as it is fast and its noise
approaches the theoretical minimum 1/sqrt(N)

 The FPPS offers a major speed up for a given noise amplitude wrt to the
HFMM

(S
er

ia
l)

 50

FPPS parallelisation
performance

 Excellent speedup using OpenMP on the most of the
loops (not within fftw)

 51

Performance vs needs
 Many studies are run on local machines (usually 4 to 12

cores), which performances allow for decent studies
 For most studies the code performs well, but requires

proper parallel infrastructure, as well as manpower for
setting up, testing and optimisation on each architecture

→ Preferred resources : Multiple nodes with fast connection,
regular memory and possibly several cores per node

 EPFL infrastructures (accessible on request by L. Rivkin's Ph D. students)

offer such capabilities, most results obtained with COMBI
where based on their facilities

 Need to investigate potential of current CERN
infrastructures

 52

Future plans
 Current implementation has great potential

 Maintain and use the code to produce results (including implementation of 'minor' actions for interplay studies)

 Emittance studies are limited by the amount of numerical noise due to the field solver with a
finite number of macro-particles (106 → 107)

 GPU acceleration is not suited for strong-strong simulations due to the communication
requirements (imposed by the physics)

→ Need for computing resources (large number of CPUs per node)

 Long term stability studies (either due to slow rise times, or slow distorsions of the particle
distribution) requires several turns (~106 or more) and several parameter scans

→ Need for computing resources (large number of CPUs per node, possibly large
number of nodes for multibunch studies)

 Effort on the 6D beam-beam effects just (re-)started

→ Effectively increases the computational need by a factor ~50 (number of slices per
bunch)

 Testing and parallelisation of the 6D soft-Gaussian solver

 Implementation of a self-consistent 6D solver ?

 53

Documentation

 Source are available on svn : https://svnweb.cern.ch/cern/wsvn/COMBI

 doc/action codes
 doc/input conventions
 doc/goottoknow

 https://cds.cern.ch/record/1987672/files/CERN-THESIS-2014-246.pdf
appendix A

 https://twiki.cern.ch/twiki/bin/view/ABPComputing/COMBI

… better than nothing

https://svnweb.cern.ch/cern/wsvn/COMBI
https://cds.cern.ch/record/1987672/files/CERN-THESIS-2014-246.pdf
https://twiki.cern.ch/twiki/bin/view/ABPComputing/COMBI

 54

License

 CERN copyright

 55

References
 http://wwwslap.cern.ch/collective/hirata/

 J. Carrier, L. Greengard, V. Rokhlin, A Fast Adaptive Algorithm for Particle Simulation, Yale U. Comp. Sci. Dept. RR #
496. Sep.86, Revised Jan.87

 F.W. Jones, H.O. Schönauer, New Space-Charge Methods in Accsim and Their Application to Injection in the CERN
PS Booster, 1999 Particle Accelerator Conference, New York, USA

 W. Herr, M.P. Zorzano, F. Jones, A hybrid fast multipole method applied to beam-beam collisions in the strong-strong
regime, Workshop on Beam-beam Effects, Fermilab, Batavia, IL, USA , 25 - 28 Jun 2001

 W. Herr and F. Jones, Parallel computation of beam-beam interactions including longitudinal motion, PAC 2003,
Portland, US

 T. Pieloni, W. Herr, Models to Study Multi-bunch Coupling through Head-on and Long-range Beam-beam Interactions,
EPAC 2006, Edinburgh, Scotland

 F. Jones, W. Herr, T. Pieloni, “Parallel Beam-Beam Simulation Incorporating Multiple Bunches and Multiple Interaction
Regions”, Proceedings of the 22nd Particle Accelerator Conference, Albuquerque, New Mexico, USA (2007)

 T. Pieloni, A Study of Beam-Beam Effects in Hadron Colliders with a Large Number of Bunches, PhD thesis, EPFL,
2008

 F. Jones, W. Herr, T. Pieloni, “Self-Consistent Parallel Multi Bunch Beam-Beam Simulation using a Grid-Multipole
Method”, Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada (2009)

 X. Buffat, Transverse Beams Stability Studies at the Large Hadron Collider, PhD thesis, EPFL, 2015

 A. Florio, X. Buffat, T. Pieloni, Fast Poisson Solver for self-consistent beam-beam and space-charge field computation
in multiparticle tracking simulations, CERN-ACC-NOTE-2015-0038

http://wwwslap.cern.ch/collective/hirata/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	page16 (1)
	page16 (2)
	page16 (3)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	page22 (1)
	page22 (2)
	page22 (3)
	page23 (1)
	page23 (2)
	page23 (3)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	page37 (1)
	page37 (2)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

