

Status and Outlook of the LHC

Enrico Bravin - CERN BE/BI for the LHC team

2016 Annual US LHC Users Association Meeting 2-4 November 2016 Lawrence Berkeley National Laboratory

Outline

- Objectives for 2016 and run2
- Parameters for 2016 and differences w.r.t. 2015
- Summary of commissioning and operation
- Performance and achievements
- Peek at 2017 and 2018

Objectives for Run 2

- Run 2 main objective: 100 fb⁻¹ p-p for ATLAS and CMS at E_{cm} ≥ 13TeV
- 2015: Recommission the machine after LS1 at E_{beam} = 6.5TeV. Target 5 fb⁻¹
- 2016: p-p production + Pb-p run. Target p-p 25 fb-1
- 2017-2018: p-p (+ HI in 2018). Target p-p 35 fb⁻¹/y

Changes 2015 → 2016

$$L = \frac{N_b^2 f_{rev} k_b}{4\pi \varepsilon \beta^*} \cdot \frac{1}{\sqrt{1 + \left(\frac{\phi_{xing} \sigma_s}{2\sigma_{xing}}\right)^2}}$$

- New combined ramp & squeeze→ shorter cycle
- Better handling of e-cloud effects→ mitigate transients,
- Changed BLM thresholds → minimise dumps due to UFOs
- Smaller beta* from 80cm to 40cm → higher luminosity
- BCMS beams → smaller transverse emittances → higher luminosity
- Reduced crossing angle 185 µrad → 140 µrad (1/2 angle)

Commissioning milestones

YETS - Many interventions on many systems

Ended on March 4

Powering tests

Start March 4 End March 21

HW check out

BIS loop closed March 23

Low intensity injection

First beam March 25

Low intensity combined ramp and squeeze

First CR&S March 26

Low intensity squeeze

First squeeze March 26

Corrections of Optics, Q, Q`, C-

Nominal intensity

Injection

Started operation with nominals March 29

Combined ramp and squeeze

CR&S on April 6

Squeeze

First collisions

First collisions April 8

Collimators setup

First stable beams

April 23 3b+3b April 24 12b+12b

Bunch trains injection

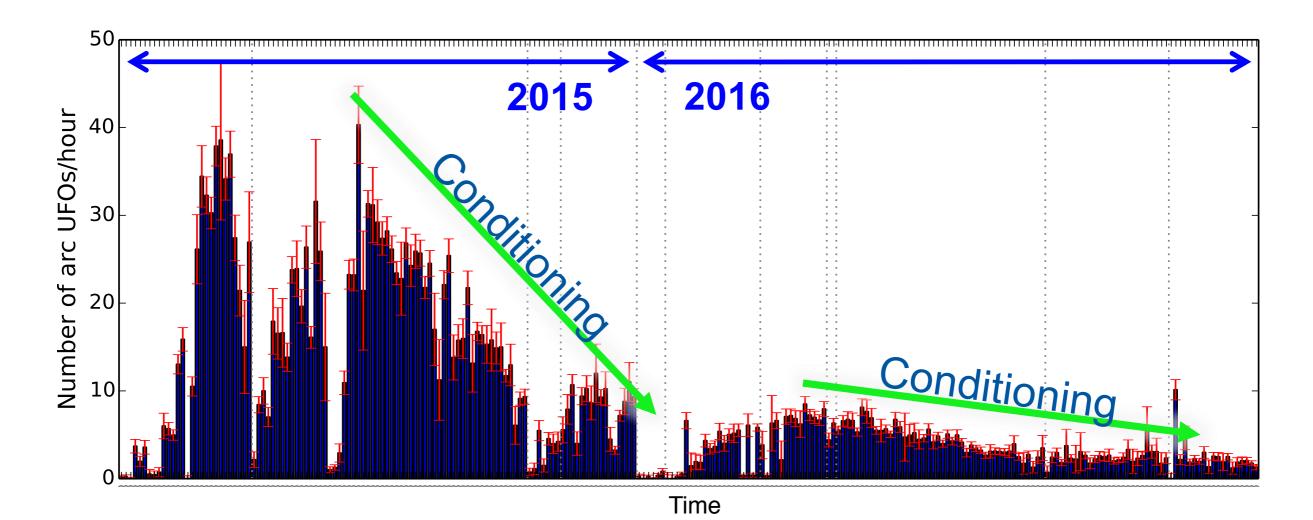
72b April 21

Physics Intensity ramp-up

2040b June 1

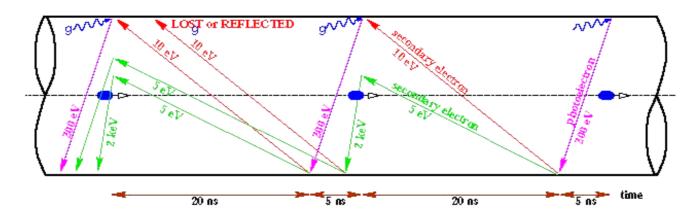
Included special bump in IP5 to increase dispersion in TOTEM

Possible performance limitations

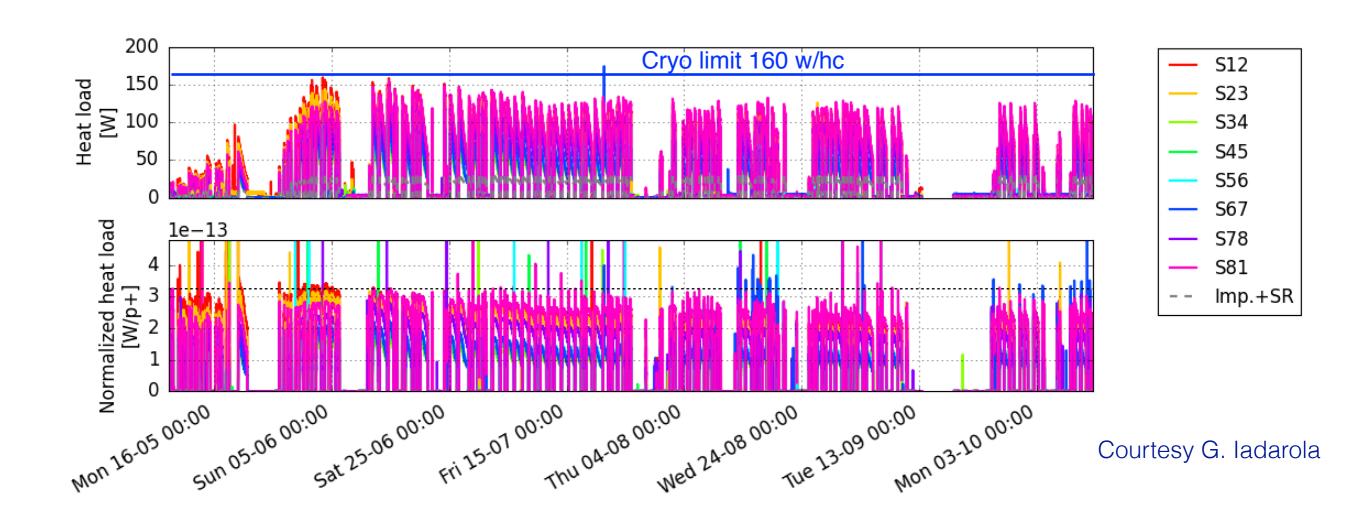

- Unidentified laying object (ULO)
 - Reduces available aperture
- Unidentified falling objects (UFO)
 - Trigger beam dumps and magnet quenches
- Electron cloud
 - Limits number of bunches (vacuum, thermal load)
 - Instabilities: losses, degraded beam quality
- Hardware faults rate
 - Fault tracking tools (identify critical systems)
 - Consolidations (using fault tracking as input)
 - R2E project (SEU almost gone)

UFOs

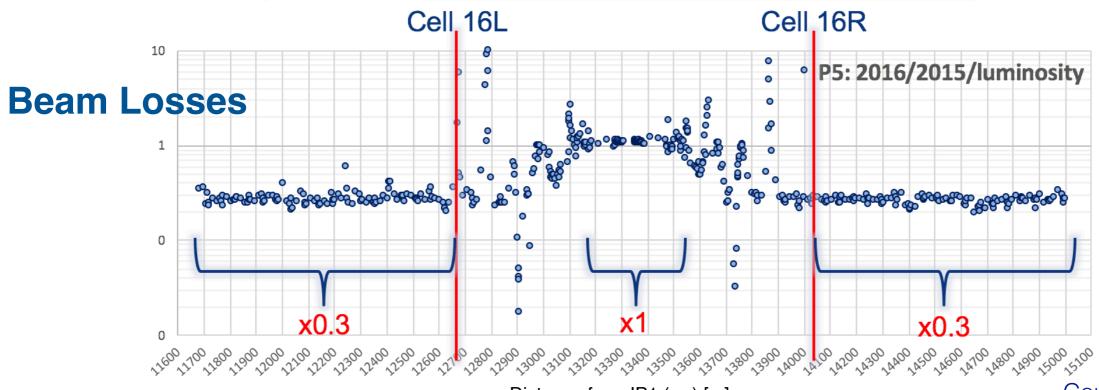
- e heam
- Small particles (~10µm) falling onto the beam generating showers
- Source and mechanism not fully understood yet
- 2015: 21 UFO-related dumps, including 3 quenches (ULO events not included)
- In 2016 increased threshold of BLMs
 - Expected increase of UFO-induced quenches (~+1)
 - Expected decrease of UFO-induced dumps(~-10)
- 2016: 20 UFO-related dumps including 3 quenches


Evolution of UFOs

- There is a clear conditioning effect
- Not known if conditioning will be lost after venting
- At the present rate UFOs are under control

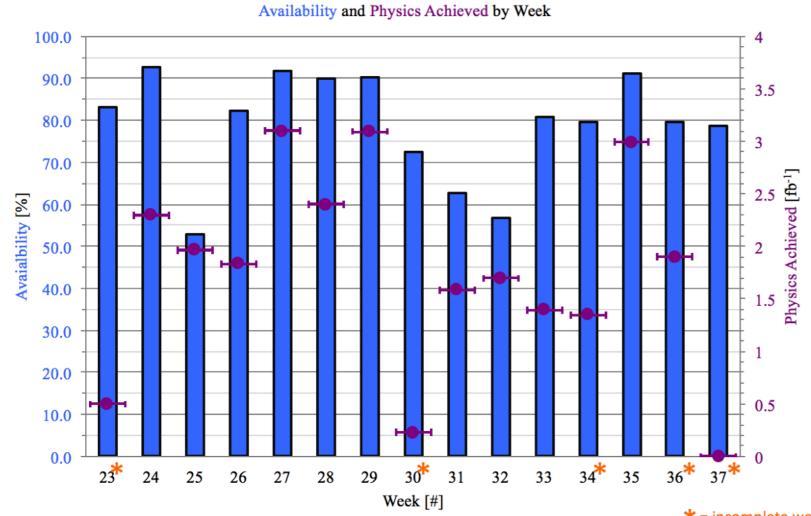

Electron cloud

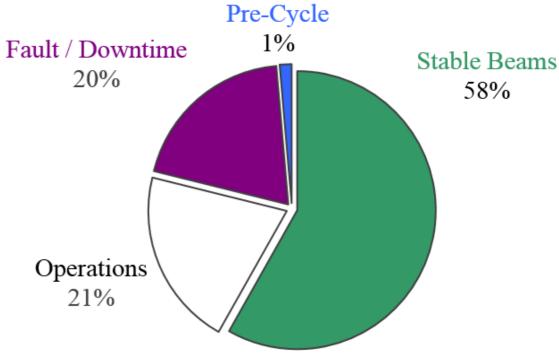
- Electron liberated on the vacuum chamber are accelerated by the p+ beam
- Accelerated electrons impact on the vacuum chamber liberating more electrons
- If the SEY is high, and the bunch spacing short, it turns into an avalanche producing heat load on the cold beam screens and trigger beam instabilities
- electron bombardment reduces the SEY (scrubbing)


e-cloud in 2016

Modest effects of e-cloud during 2016 due to the limitation in bunch current and short batches

Radiation effects

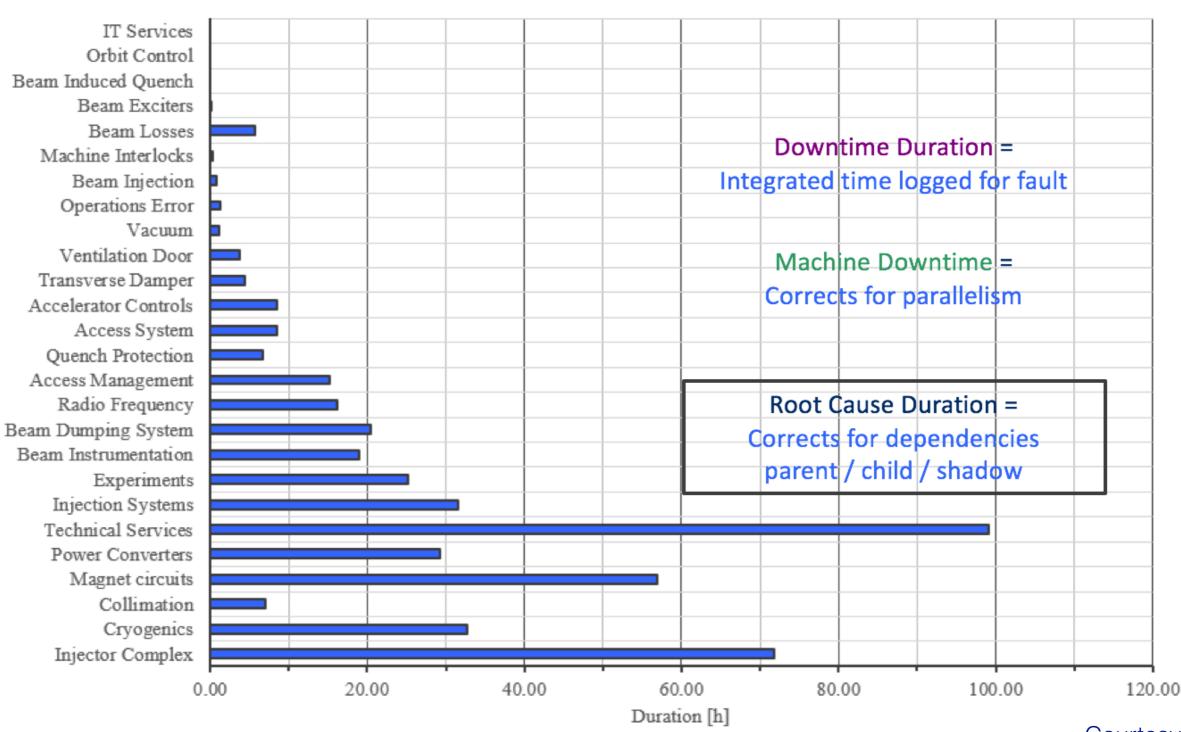

Equipment	Dumps 2015 (After TS2)	dumps 2016 35fb-1 (Expected)	dumps 2016 20fb-1 (22.07)
QPS	3	0-5	0
Power Converter	3	~13	2
Cryo	0	0	0
EN/EL	0	0	0
TE/ABT	0	0	1*
Vacuum	0	0	0
Collimation	0	0	0
RF	4**	0	0



Availability

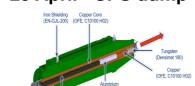
6 June → 18 September Excellent availability!

Almost 50% of fills dumped by OP



Mode	Duration [h]
Stable Beams	1112.0
Operations	384.6
Fault / Downtime	377.5
Pre-Cycle	26.4
Total	1910.5

79 days physics ≈ 1910.5 hours

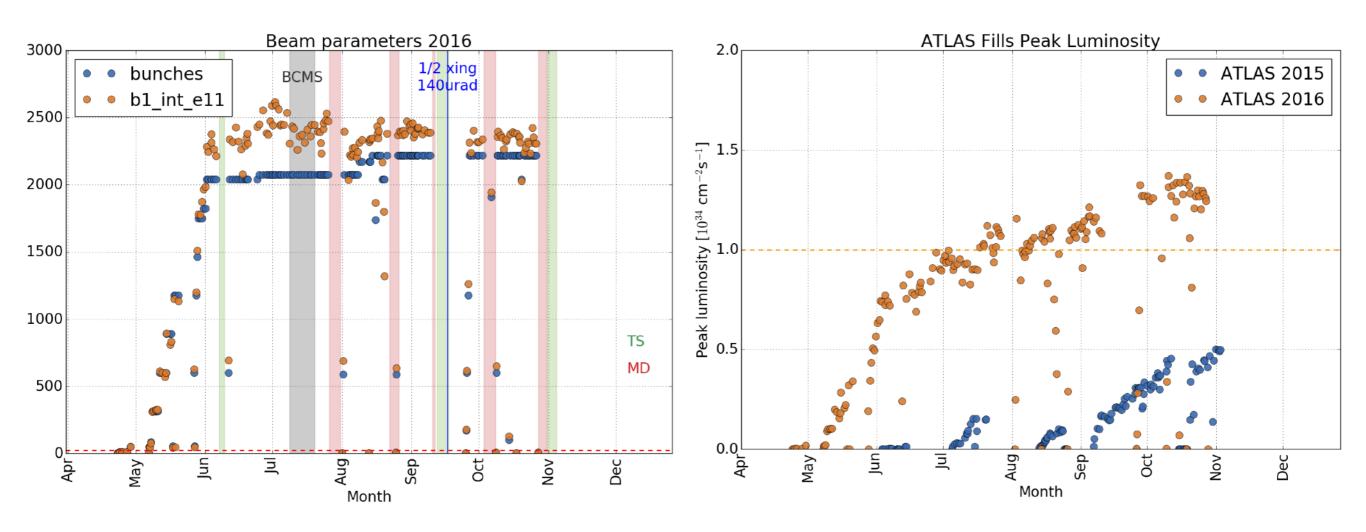

Fault analysis

Other limitations in 2016

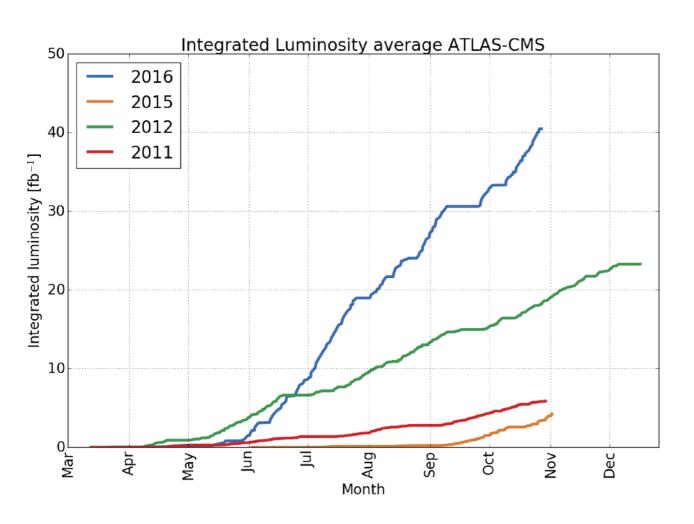
- Start of the run affected by few important faults
- Some generated long downtimes
 - 66kV transformer IP8, POPS, PS MPS, water flooding Pt.3
- Some imposed limitations throughout the year
 - LHC dump B1 N₂ leak (in the shadow of other limitations)
 - SPS internal dump (TIDVG) (no 144b/288b trains, max 2040b/2220b)
 - Bad vacuum around injection kicker of B2
 - max total current for B2 limited to ~2.4E14p (e-cloud)

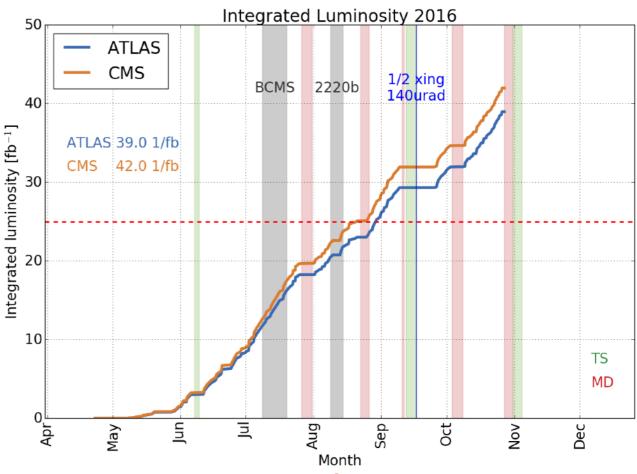
14 April - LHC dump B1 25 April - SPS dump

27 April – POPS down


29 April marteen

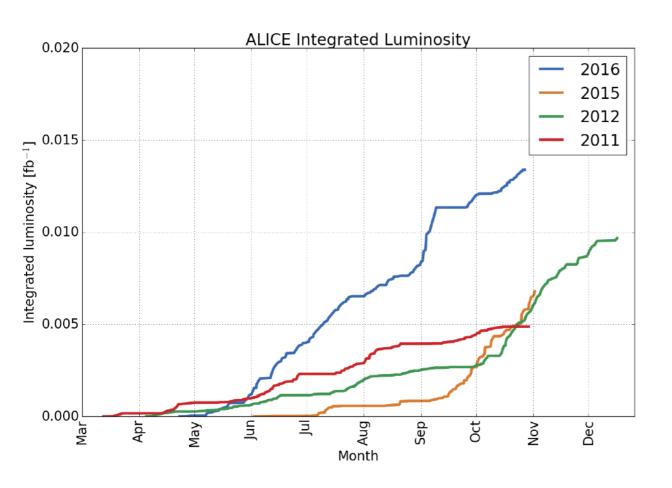
20 May - PS MPS 21 June - Water Pt. 3


LHC performance 2016

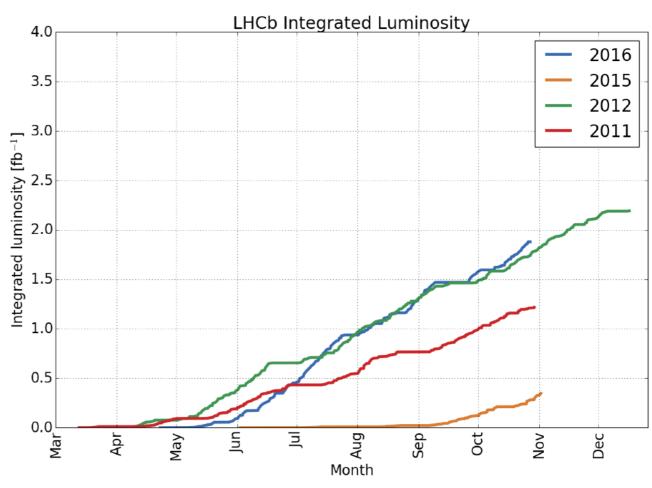

Steady production from beginning of June

From end of June LHC operated consistently above design peak luminosity

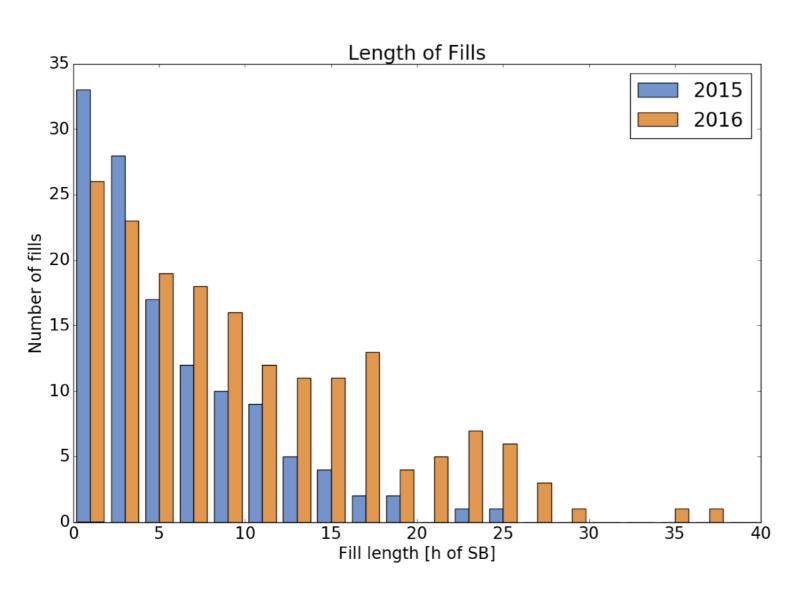
Production 2016



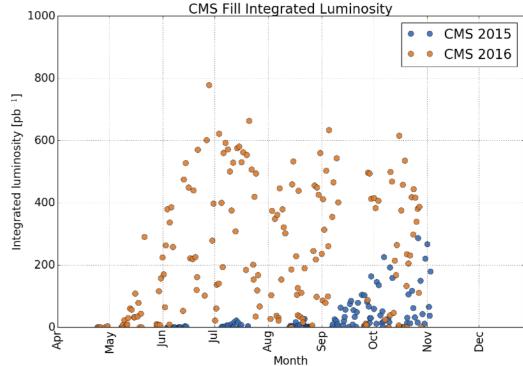
Astonishing integrated luminosity achievement

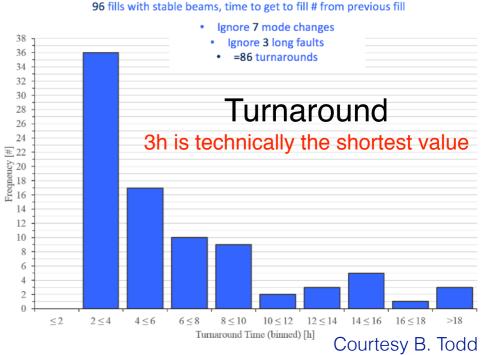

Fast ramp-up after each configuration change Steady peace through the year

Not only ATLAS and CMS



Both profit from the long fills


ALICE $\sim 13.5 \text{ nb}^{-1}$ LHCb $\sim 1.9 \text{ fb}^{-1}$



Operation cycle

Almost half of the fills ended by operators We can finally decide the length of fills!

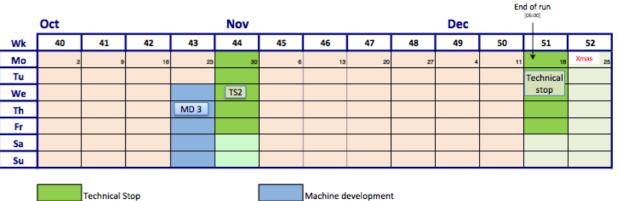
Special operation

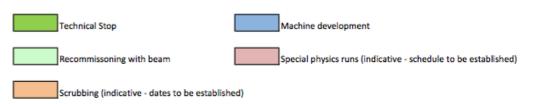
- Van der Meer scans for luminosity calibration
 - Full VdM scans on 17, 18, 27 May fro all experiments
 - Partial scans and studies here and there
- Large beta* run for forward physics (ALFA and TOTEM)
 - 19-22 September, very successful
- Proton-Lead physics
 - Next! Ambitious and dense program just starting
 - Commissioning of required cycles partially done
- Plus many ad hoc cycles during the 20 days of MDs
 - Partially with HL-LHC in view, partially to test improvement already applied

2016

			Sc	rub	bing										
	Apr					May		June							
Wk	14	15	16	П	17	18	19	20		21	22	23	24	25	26
Мо	4	11	18	¥	25	2	9	Whit	16	23	30	6	13	20	27
Tu								- VdM							
We		Injector TS (8 hours)						Valvi				TS1			
Th						Ascension							beta* 2.5 km dev.		
Fr	Page	mmissionir				May Day comp				VdM					
Sa		vith beam	15												
Su				-	Lst May										

	July				Aug				Sep				
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	4	11	18	25	1	8	15	22	29	5	12	E 20 19	26
Tu								MD 2				= 2.5 km taking	
We											TS2	beta* = data	
Th				MD1						Jeune G		pe	
Fr								beta* 2.5 km dev.					
Sa										MD3			
Su				beta* 2.5 km dev.						WID 3			


	Oct				Nov				End o	of LHC run [06:00]			
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	3	10	17	24	31	7	14	21	28	Ψ ,	5 12	19	26
Tu	MD 4					lons					ded year en	nd	
We					TS3	setup				tec	hnical stop		
Th							lon	run				Lab closed	
Fr				MD 5			(p-	Pb)					
Sa													
Su									Pb MD			Xmas	New Year
	Technical Stop Machine development												


2017 DRAFT

				Co	ntrols												
		Jar	ı ⁱⁿ	terv	ventions			Feb					Mar				
Wk	Γ	1			2	3	4	5	(6	7	8	9	10	11	12	13
Мо			2		9	1	6 21	30		6	13	20	27	6	13	20	27
Tu				1	1												
We																	
Th										Te	chnical sto	p (EYETS)					
Fr																	
Sa																	
Su																	

										Scru	ubbing				
	Apr					May					June				
Wk	14	15	16	17	П	18	19	20	21	22	23	24	25		26
Мо	3	10	Easter Mon 17		24	1st May 1	8	15	22	29	Whit	5 12	un.	19	26
Tu											¥		physic		
We				out									cial pl		
Th				checkout					Ascension				Special		
Fr		G. Friday			П										
Sa				Machine			Re	commission with beam							
Su				ž											

	July		Aug						Sep				
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	3	10	17	24	5 E	1 7	14	21	28	4	11	18	25
Tu					physic						MD 2		
We	1			TS1	d lai								
Th					Special					Jeune G			
Fr			MD 1										
Sa													
Su													

Special physics runs

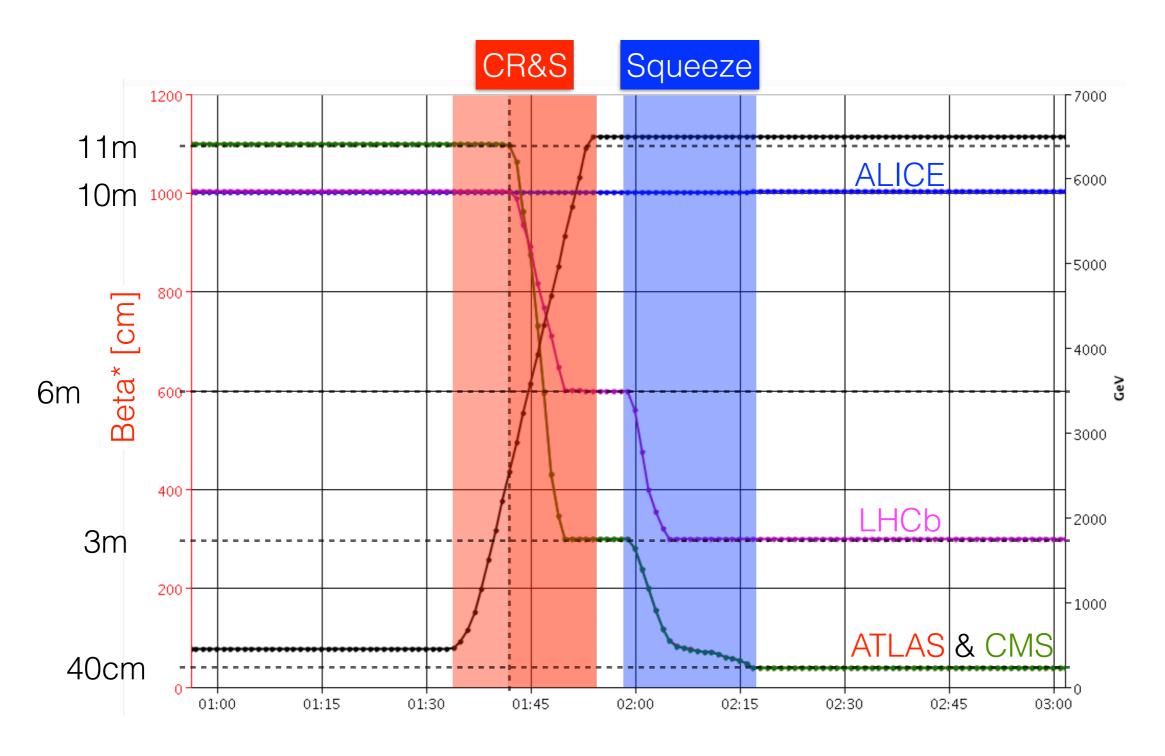
Recommissoning with beam

Scrubbing

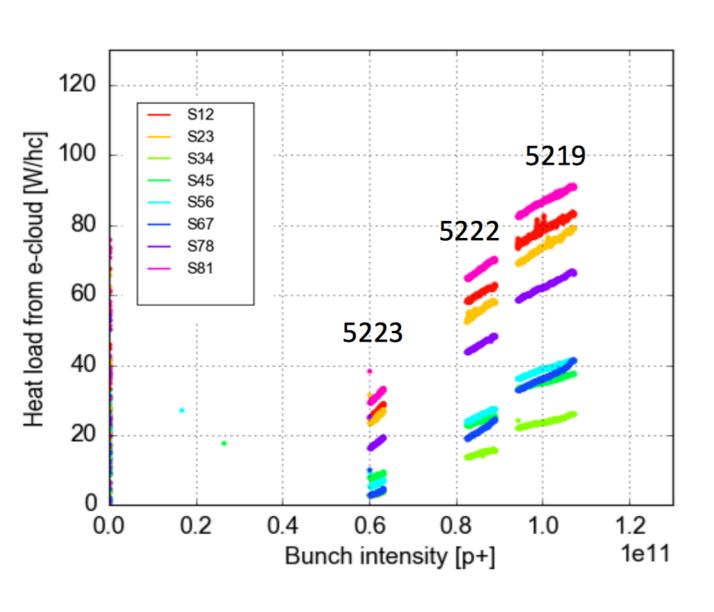
Beam parameters for 2017

	2016	2017
I bunch [E11]	1.1	1.1 - 1.25
Emittance (SB) [µm]	3.2 - 2.5	3.2 - (2.5 BCMS)
Number of bunches	2040 - 2220	2748 (2448 BCMS)
β* (IP1&5) [cm]	40	40 (33)
Crossing angle [µrad]	185 - 140	185 (140)(170)(205)
Peak luminosity [E34 cm ⁻² s ⁻¹]	1.4	1.4 - (1.9)
Peak pileup	45	45 - 56
Integrated luminosity [fb-1]	40	40 - ?

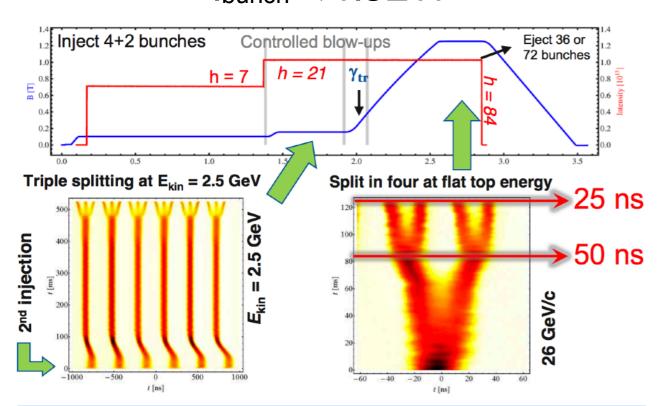
- Many decisions to be taken at next Chamonix
 - •BCMS or standard?
 - Beta* 40cm or 33cm
 - ATS optics or standard optics
- Fate of SPS dump will be revised in March
- Inner triplet maximum heat load to be re-evaluated (present limit at 1.7E34 cm⁻²s⁻¹ peak luminosity)
- Sector 1-2 will be warmed up → UFOs and e-cloud may come back


Luminosity levelling at IP1 and IP5 may be needed

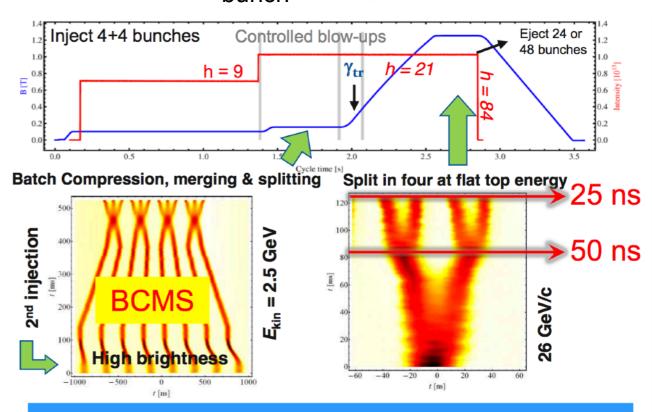
Conclusions


- Despite some troublesome events it has been a wonderful year at the LHC
- Excellent machine availability/reliability as never before
- UFO, e-cloud, faults under control
- Despite (thanks to?) not pushing parameters too hard due to limitations delivered more than 40fb-1 to ATLAS and CMS
- Big progress in understanding and controlling the beast
- Lot of work ahead for the EYETS
- Established a solid base for the coming years

Combined Ramp & Squeeze


e-cloud studies

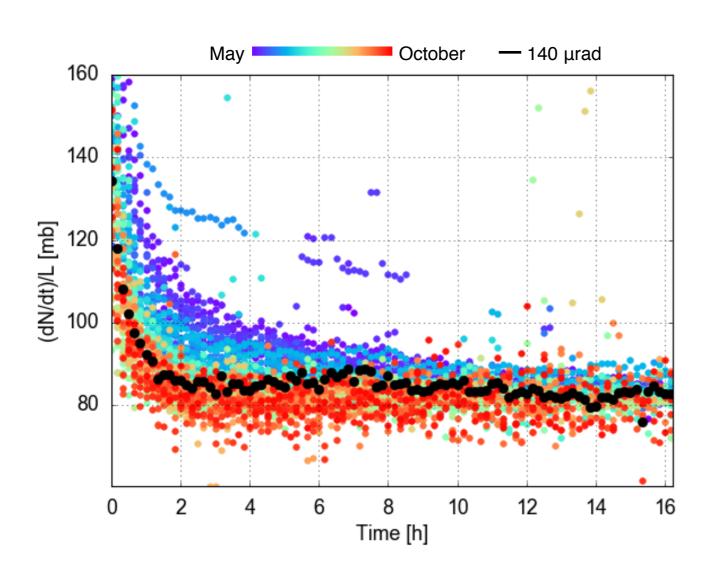
- Several fills with same conditions during the year to quantify conditioning (modest)
- 3 fills with 72bpi and increasing bunch intensity
- Large differences between sectors not understood


Standard vs BCMS beams in the PS

Standard 72b batch ϵ_{xy} ~2.5µm I_{bunch} < 1.3E11

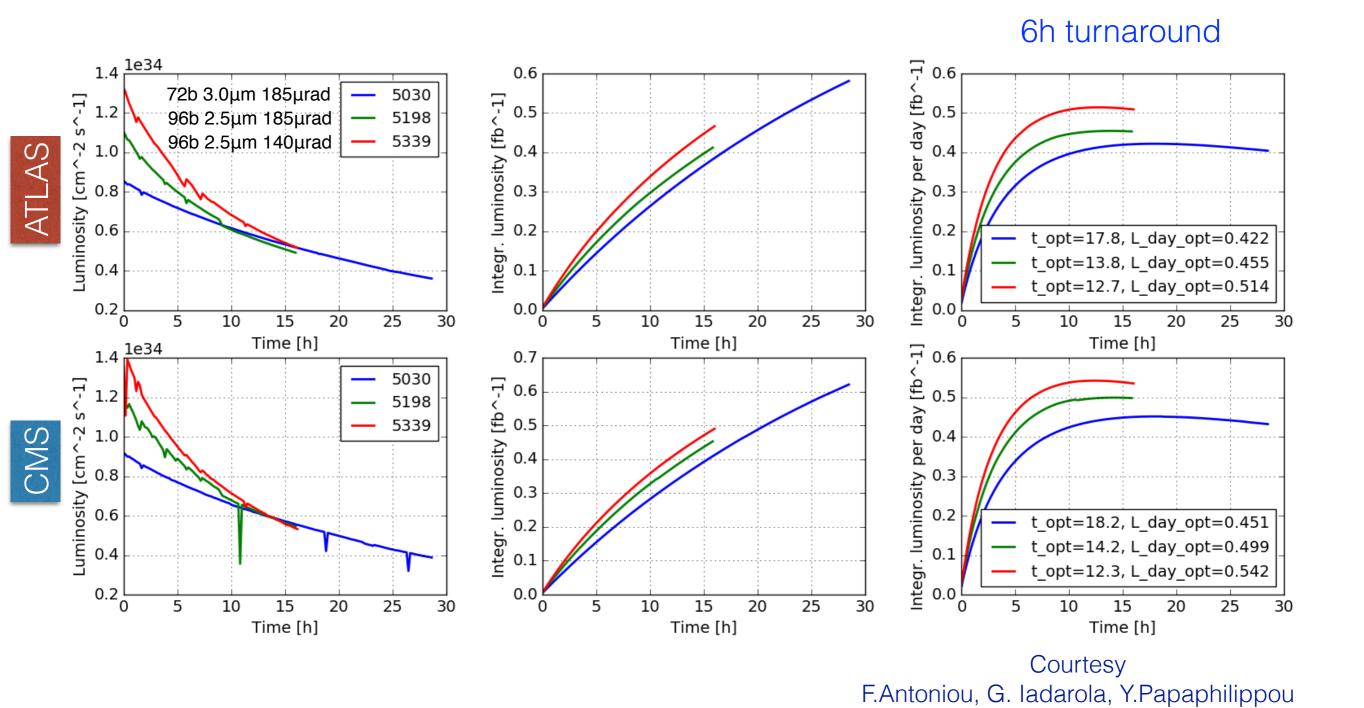
25 ns: Each PSB bunch divided by: $12 \rightarrow 6 \times 3 \times 2 \times 2 = 72$ 50 ns: Each PSB bunch divided by: $6 \rightarrow 6 \times 3 \times 2 = 36$

BCMS 48b batch $\varepsilon_{xy}\sim1.5\mu m$ $I_{bunch}<1.3E11$


25 ns: PSB bunches 'divided' by: $6 \rightarrow 8/2 \times 3 \times 2 \times 2 = 48$ 50 ns: PSB bunches 'divided' by: $3 \rightarrow 8/2 \times 3 \times 2 = 24$

Beam structure

- The LHC injection gap is ~900ns while the SPS injection gap is ~200ns
- The maximum number of bunches in the LHC depends on the number of batches per SPS injection
 - 72b / inj. → max 2040b
 - $(2 \times 48b) / inj.$ $\rightarrow max 2220b (2076b)$
 - $(4 \times 72b) / inj.$ $\rightarrow max 2800b$


Losses in collisions

Courtesy F.Antoniou, G. Iadarola, Y.Papaphilippou

- During the first few hours in collisions losses well in excess of the burn-off
- After ~3h losses become dominated by luminosity burn-off
- Situation improved during the year (BCMS)
- Reduction of crossing angle has no effect

Luminosity lifetime

