ATLAS:Status and plans ### **ATLAS Run-2** Proton proton data taking for 2016 ended last week Very successful year – p-Pb collisions starting soon LHC exceeded design luminosity (10³⁴cm⁻² sec⁻¹) More than 1/3 of promised Run-2 luminosity now delivered (3.9+35.9 fb⁻¹) Peak Luminosity per Fill [10 $^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\!\mathrm{J}$ ### **ATLAS Run-2** This superb LHC performance has a cost: But ATLAS data taking efficiency >92% Higher pileup than expected: nominal max was 25. - >40 publications from Run-2: many more preliminary results - >500 Run-1 papers - More Run-1 papers from SM measurements still pending | Subdetector | Number of Channels | Approximate Operational Fraction | |----------------------------------|--------------------|----------------------------------| | Pixels | 92 M | 98.0% | | SCT Silicon Strips | 6.3 M | 98.6% | | TRT Transition Radiation Tracker | 350 k | 97.2% | | LAr EM Calorimeter | 170 k | 100% | | Tile calorimeter | 5200 | 99.0% | | Hadronic endcap LAr calorimeter | 5600 | 99.5% | | Forward LAr calorimeter | 3500 | 99.7% | | LVL1 Calo trigger | 7160 | 99.9% | | LVL1 Muon RPC trigger | 383 k | 99.8% | | LVL1 Muon TGC trigger | 320 k | 99.9% | | MDT Muon Drift Tubes | 357 k | 99.7% | | CSC Cathode Strip Chambers | 31 k | 97.7% | | RPC Barrel Muon Chambers | 383 k | 96.6% | | TGC Endcap Muon Chambers | 320 k | 99.6% | | ALFA | 10 k | 99.9 % | | AFP | 188 k | 98.8 % | ### **ATLAS Run-2** Trigger menu stressed Offline computing: where to put all the data? - Tier 1 and Tier 2 disks full - Computing costs in 2017/18 increase by ~20% # **Physics comments** Most Run-2 results are searches as a new energy regime has opened up. - Nothing has shown up yet. - Note that some new excesses should be expected given the large number of ongoing searches - The 2015 diphoton excess has not been confirmed - It appears to have been a statistical fluctuation. More information in Sarah Demers talk later today and in the lightening talks - She will try to cover SUSY: - I'll show some exotics examples - Look here for all references - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome # **Physics comments II** Expect results, particularly searches, using full 2016 data set for Moriond 2017 If there are only limits, cannot expect discovery in Run-2 in same channel Expect searches to get more complicated - Low cross section, low mass searches - Some may not use full detector - Kinematically restricted phase space # **Physics comments III** Spectacular agreement between data and theoretical models. - Even in tails of distributions - This has made some searches much easier **ATLAS** Preliminary $\int \mathcal{L} \, dt = (3.2 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$ | | Model | ℓ , γ | Jets† | E ^{miss} | ∫£ dt[fl | ⁻¹] Limit | Reference | |------------------|---|---|---|--------------------------------|---|---|---| | Extra dimensions | ADD $G_{KK}+g/q$
ADD non-resonant $\ell\ell$
ADD QBH $\to \ell q$
ADD QBH
ADD BH high $\sum p_T$
ADD BH multijet
RS1 $G_{KK} \to \ell\ell$
RS1 $G_{KK} \to \gamma\gamma$
Bulk RS $G_{KK} \to WW \to qq\ell\nu$
Bulk RS $G_{KK} \to WH \to bbbb$
Bulk RS $g_{KK} \to tt$
2UED / RPP | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 3.2
20.3
20.3
15.7
3.2
3.6
20.3
3.2
13.2
13.3
20.3
3.2 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1604.07773
1407.2410
1311.2006
ATLAS-CONF-2016-069
1606.02265
1512.02586
1405.4123
1606.03833
ATLAS-CONF-2016-062
ATLAS-CONF-2016-049
1505.07018
ATLAS-CONF-2016-013 | | Gauge bosons | $\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qq\nu\nu \operatorname{model} \\ \operatorname{HVT} W' \to WZ \to qqqq \operatorname{model} \\ \operatorname{HVT} V' \to WH/ZH \operatorname{model} B \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \end{array}$ | | $\begin{array}{c} -\\ -\\ 2b\\ -\\ 1J\\ 2J\\ \text{nel}\\ 2b,0\text{-}1j\\ \geq 1b,1J \end{array}$ | -
Yes
Yes
-
Yes | 13.3
19.5
3.2
13.3
13.2
15.5
3.2
20.3
20.3 | Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV g _V = 1 W' mass 3.0 TeV g _V = 3 V' mass 2.31 TeV g _V = 3 W' mass 1.92 TeV W' mass 1.76 TeV | ATLAS-CONF-2016-045
1502.07177
1603.08791
ATLAS-CONF-2016-061
ATLAS-CONF-2016-082
ATLAS-CONF-2016-055
1607.05621
1410.4103
1408.0886 | | CI | CI qqqq
CI ℓℓqq
CI uutt | –
2 e, μ
2(SS)/≥3 e | 2 j
-
e,μ ≥1 b, ≥1 j | -
-
Yes | 15.7
3.2
20.3 | $Λ$ 19.9 TeV $η_{LL} = -1$ $Λ$ 25.2 TeV $η_{LL} = -1$ $Λ$ 4.9 TeV $ C_{RR} = 1$ | ATLAS-CONF-2016-069
1607.03669
1504.04605 | | DM | Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM) | | $\geq 1j$ $1j$ $1J, \leq 1j$ | Yes
Yes
Yes | 3.2
3.2
3.2 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 70 | Scalar LQ 1 st gen
Scalar LQ 2 nd gen
Scalar LQ 3 rd gen | 2 e
2 μ
1 e, μ | $\geq 2 j$
$\geq 2 j$
$\geq 1 b, \geq 3 j$ | -
Yes | 3.2
3.2
20.3 | | 1605.06035
1605.06035
1508.04735 | | Heavy | $\begin{array}{c} VLQ\;TT \to Ht + X \\ VLQ\;YY \to Wb + X \\ VLQ\;BB \to Hb + X \\ VLQ\;BB \to Zb + X \\ VLQ\;BB \to Zb + X \\ VLQ\;QQ \to WqWq \\ VLQ\;T_{5/3}\;T_{5/3} \to WtWt \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\geq 2 \text{ b}, \geq 3 \text{ j}$
$\geq 1 \text{ b}, \geq 3 \text{ j}$
$\geq 2 \text{ b}, \geq 3 \text{ j}$
$\geq 2/\geq 1 \text{ b}$
$\geq 4 \text{ j}$
$\epsilon, \mu \geq 1 \text{ b}, \geq 1 \text{ j}$ | Yes | 20.3
20.3
20.3
20.3
20.3
20.3 | T mass 855 GeV T in (T,B) doublet Y mass 770 GeV Y in (B,Y) doublet B mass 735 GeV isospin singlet B mass 755 GeV B in (B,Y) doublet Q mass 690 GeV T _{5/3} mass 990 GeV | 1505.04306
1505.04306
1505.04306
1409.5500
1509.04261
ATLAS-CONF-2016-032 | | Excited fermions | Excited quark $q^* \to q\gamma$
Excited quark $q^* \to qg$
Excited quark $b^* \to bg$
Excited quark $b^* \to Wt$
Excited lepton ℓ^*
Excited lepton γ^* | 1 γ
-
-
1 or 2 e, μ
3 e, μ
3 e, μ, τ | 1 j
2 j
1 b, 1 j
u 1 b, 2-0 j
– | -
-
Yes
- | 3.2
15.7
8.8
20.3
20.3
20.3 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1512.05910
ATLAS-CONF-2016-069
ATLAS-CONF-2016-060
1510.02664
1411.2921
1411.2921 | | Other | LSTC $a_T \to W\gamma$
LRSM Majorana ν
Higgs triplet $H^{\pm\pm} \to ee$
Higgs triplet $H^{\pm\pm} \to \ell\tau$
Monotop (non-res prod)
Multi-charged particles
Magnetic monopoles | 1 e, μ, 1 γ
2 e, μ
2 e (SS)
3 e, μ, τ
1 e, μ
– | / –
2j
–
1 b
– | Yes
-
-
-
Yes
- | 20.3
20.3
13.9
20.3
20.3
20.3
7.0 | a_T mass960 GeV N^0 mass2.0 TeV $m(W_R) = 2.4$ TeV, no mixing
DY production, $BR(H_L^{\pm\pm} \to ee) = 1$ $H^{\pm\pm}$ mass570 GeVDY production, $BR(H_L^{\pm\pm} \to ee) = 1$ $H^{\pm\pm}$ mass400 GeVDY production, $BR(H_L^{\pm\pm} \to \ell\tau) = 1$ spin-1 invisible particle mass657 GeV $a_{non-res} = 0.2$ multi-charged particle mass785 GeVDY production, $ q = 5e$ monopole mass1.34 TeVDY production, $ g = 1g_D$, spin 1 | 1411.2921
1410.5404
1504.04188 | | | ✓ | s = 8 TeV | √s = 13 | TeV | | 10^{-1} 1 10 Mass scale [Te | | ^{*}Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J). ### **General remarks and examples** Single production of objects with strong couplings - Excited quarks, microscopic black holes..... - Good S/B - Limits have reached 5-8 TeV. - Further gains slow with luminosity Single production with electro weak couplings - New gauge bosons.... - Good S/B - Limits have reached 3-6 TeV Pair production of objects with strong couplings - Lepto-quarks. gluinis - 1-2 TeV _ ### Dijet resonance search Events selected with jet trigger Search for structure in dijet mass: no Monte carlo needed, but data are consistent with expectations # **Charged Gauge boson search** Lepton trigger Looks at transverse mass of lepton and etmiss (neutrino) # **Diphoton search** ### Left over from 2015 excess: - I recommend this as a use case in a class on how to interpret a result - Can be interpreted as limit on new spin 0 particle ### "Dark Matter" searches These are all indirect and model dependent. #### Basic idea - Produce dark matter particle in pairs - Leaves no energy in detector: Missing ET signature - Look for visible objects produced in association with DM - Any standard model object - Jets, photons, quarks, heavy quarks, Higgs - Measuring something + missing energy - Relies on proper understanding of - Standard model contributions - − Z \rightarrow vv, W \rightarrow μ v - » Validated from control regions - Lost jets, missing ET resolution - Summary chart follows ### **Generic approach** ### "Dark Matter": new search ### W/Z decaying to jets produced with DM candidate ### "Dark Matter": "mediator model" ### "Original" search Jets+Met Dominant background is Z decay to neutrinos Validate using leptonic Z and W production # "Dark Matter": model dependent comparison to direct detection ### Higgs as a search tool New particles may decay to Higgs: - Example of of X->HH - Prototype for Higgs self coupling in Run-4+ Look for final state with largest Higgs Branching ratio - 4 Jets with pairwise masses consistent with Higgs - B-tagging crucial to reduce QCD backgrounds - pt- threshold on jets crucial - QCD background is hard to computed - Use data driven method 1 C ### Higgs as a search tool ### ATLAS-CONF-2016-049 - 4 Jets, 3 btagged, - Consistent with two Higgs bosons - Look for peak in HH mass - Background model from Higgs sidebands ### **Looking forward** ### Details will evolve somewhat - Run-2 has two more years to go - Notes for 2017 - No Ion run - Later start for collisions than in 2016 - Comparable integrated luminosity to 2016 ### LHC roadmap: according to MTP 2016-2020 LS2 starting in 2019 => 24 months + 3 months BC LS3 LHC: starting in 2024 => 30 months + 3 months BC Injectors: in 2025 => 13 months + 3 months BC 3rd March 2016 # **Longer term luminosity** Large increase in luminosity for Run-4 and later Goal is 3000 fb⁻¹ integrated Major detector upgrades needed to cope with consequent integrated luminosity - Maintain thresholds at current values - Both at trigger and off-line - Entirely new tracker - Layout not yet fully specified _ ### **Longer term detector** Slide from Brian Peterson ### Overview of Phase-II Upgrades Overall scope of Phase-II upgrades is mostly settled Now evaluating different design/implementation options towards submission of TDRs over next 15 months ### **ATLAS upgrade schedule** # Tracker upgrade # **Physics goals: New physics** Detailed Standard Model parameters and processes Most important is Higgs (later) Measure properties on particles discovered in Run-2 Still waiting Extend searches. - Larger masses - Currently accessible masses, but lower production rates or small branching ratios to observable channels ### **Long term Physics goals: Higgs** ### Well defined program - Observe Η μμ - Measure rates to μμ and ττ - Other rare processes Zg - Constrain Higgs width - Constrain Higgs self coupling - Measure rate of Higgs pair produce # Higgs to μμ Limited by background from Drell-Yan production. Current limit: BR < # **Higgs Width** Measure ZZ to 4l for m(4l)>220 GeV Sensitive to interference and hence Higgs width _ ATL-PHYS-PUB-2015-024 # **Higgs pair production** Destructive interference between production diagrams - Rate is minimized for Higgs self coupling at Standard Model value - Can begin to constrain coupling into a range as data is accumulated http://xxx.lanl.gov/abs/1401.7340 # **Higgs pair production** - Rate is minimized for Higgs self coupling at Standard Model value - Can begin to constrain coupling into a range as data is accumulate - Note that total production rate is ~10 fb http://xxx.lanl.gov/abs/1401.7340 # **Higgs pair production (bbbb)** ### Large backgrounds from - QCD production of 4 bquarks - Top pair production in association with bb - (bbbb) mass distribution differs from signal ### Channel with largest rates ### Challenges - Acceptance due to trigger thresholds - Shape of (bbbb) mass distribution not very sensitive - Systematic uncertainties very important # Higgs pair production (bbyy) Rate limited – Small $\gamma\gamma$ branching ratio Much better S/B ### **Summary** ### Large backgrounds from - QCD production of 4 bquarks - Top pair production in association with bb - (bbbb) mass distribution differs from signal ### Channel with largest rates ### Challenges - Acceptance due to trigger thresholds - Shape of (bbbb) mass distribution not very sensitive - Systematic uncertainties very important