ATLAS:Status and plans

ATLAS Run-2

Proton proton data taking for 2016 ended last week Very successful year – p-Pb collisions starting soon

LHC exceeded design luminosity (10³⁴cm⁻² sec⁻¹) More than 1/3 of promised Run-2 luminosity now delivered (3.9+35.9 fb⁻¹)

Peak Luminosity per Fill [10 $^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\!\mathrm{J}$

ATLAS Run-2

This superb LHC performance has a cost: But ATLAS data taking efficiency >92% Higher pileup than expected: nominal max was 25.

- >40 publications from Run-2: many more preliminary results
 - >500 Run-1 papers
 - More Run-1 papers from SM measurements still pending

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	98.0%
SCT Silicon Strips	6.3 M	98.6%
TRT Transition Radiation Tracker	350 k	97.2%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	5200	99.0%
Hadronic endcap LAr calorimeter	5600	99.5%
Forward LAr calorimeter	3500	99.7%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	383 k	99.8%
LVL1 Muon TGC trigger	320 k	99.9%
MDT Muon Drift Tubes	357 k	99.7%
CSC Cathode Strip Chambers	31 k	97.7%
RPC Barrel Muon Chambers	383 k	96.6%
TGC Endcap Muon Chambers	320 k	99.6%
ALFA	10 k	99.9 %
AFP	188 k	98.8 %

ATLAS Run-2

Trigger menu stressed

Offline computing: where to put all the data?

- Tier 1 and Tier 2 disks full
- Computing costs in 2017/18 increase by ~20%

Physics comments

Most Run-2 results are searches as a new energy regime has opened up.

- Nothing has shown up yet.
- Note that some new excesses should be expected given the large number of ongoing searches
- The 2015 diphoton excess has not been confirmed
 - It appears to have been a statistical fluctuation.

More information in Sarah Demers talk later today and in the lightening talks

- She will try to cover SUSY:
- I'll show some exotics examples
- Look here for all references
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome

Physics comments II

Expect results, particularly searches, using full 2016 data set for Moriond 2017

If there are only limits, cannot expect discovery in Run-2 in same channel

Expect searches to get more complicated

- Low cross section, low mass searches
 - Some may not use full detector
- Kinematically restricted phase space

Physics comments III

Spectacular agreement between data and theoretical models.

- Even in tails of distributions
- This has made some searches much easier

ATLAS Preliminary

 $\int \mathcal{L} \, dt = (3.2 - 20.3) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ , γ	Jets†	E ^{miss}	∫£ dt[fl	⁻¹] Limit	Reference
Extra dimensions	ADD $G_{KK}+g/q$ ADD non-resonant $\ell\ell$ ADD QBH $\to \ell q$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \to \ell\ell$ RS1 $G_{KK} \to \gamma\gamma$ Bulk RS $G_{KK} \to WW \to qq\ell\nu$ Bulk RS $G_{KK} \to WH \to bbbb$ Bulk RS $g_{KK} \to tt$ 2UED / RPP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} W' \to WZ \to qq\nu\nu \operatorname{model} \\ \operatorname{HVT} W' \to WZ \to qqqq \operatorname{model} \\ \operatorname{HVT} V' \to WH/ZH \operatorname{model} B \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \end{array}$		$\begin{array}{c} -\\ -\\ 2b\\ -\\ 1J\\ 2J\\ \text{nel}\\ 2b,0\text{-}1j\\ \geq 1b,1J \end{array}$	- Yes Yes - Yes	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV g _V = 1 W' mass 3.0 TeV g _V = 3 V' mass 2.31 TeV g _V = 3 W' mass 1.92 TeV W' mass 1.76 TeV	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-082 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
CI	CI qqqq CI ℓℓqq CI uutt	– 2 e, μ 2(SS)/≥3 e	2 j - e,μ ≥1 b, ≥1 j	- - Yes	15.7 3.2 20.3	$Λ$ 19.9 TeV $η_{LL} = -1$ $Λ$ 25.2 TeV $η_{LL} = -1$ $Λ$ 4.9 TeV $ C_{RR} = 1$	ATLAS-CONF-2016-069 1607.03669 1504.04605
DM	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)		$\geq 1j$ $1j$ $1J, \leq 1j$	Yes Yes Yes	3.2 3.2 3.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
70	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	$\geq 2 j$ $\geq 2 j$ $\geq 1 b, \geq 3 j$	- Yes	3.2 3.2 20.3		1605.06035 1605.06035 1508.04735
Heavy	$\begin{array}{c} VLQ\;TT \to Ht + X \\ VLQ\;YY \to Wb + X \\ VLQ\;BB \to Hb + X \\ VLQ\;BB \to Zb + X \\ VLQ\;BB \to Zb + X \\ VLQ\;QQ \to WqWq \\ VLQ\;T_{5/3}\;T_{5/3} \to WtWt \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 4 \text{ j}$ $\epsilon, \mu \geq 1 \text{ b}, \geq 1 \text{ j}$	Yes	20.3 20.3 20.3 20.3 20.3 20.3	T mass 855 GeV T in (T,B) doublet Y mass 770 GeV Y in (B,Y) doublet B mass 735 GeV isospin singlet B mass 755 GeV B in (B,Y) doublet Q mass 690 GeV T _{5/3} mass 990 GeV	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \to q\gamma$ Excited quark $q^* \to qg$ Excited quark $b^* \to bg$ Excited quark $b^* \to Wt$ Excited lepton ℓ^* Excited lepton γ^*	1 γ - - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j u 1 b, 2-0 j –	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \to W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \to ee$ Higgs triplet $H^{\pm\pm} \to \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e (SS) 3 e, μ, τ 1 e, μ –	/ – 2j – 1 b –	Yes - - - Yes -	20.3 20.3 13.9 20.3 20.3 20.3 7.0	a_T mass960 GeV N^0 mass2.0 TeV $m(W_R) = 2.4$ TeV, no mixing DY production, $BR(H_L^{\pm\pm} \to ee) = 1$ $H^{\pm\pm}$ mass570 GeVDY production, $BR(H_L^{\pm\pm} \to ee) = 1$ $H^{\pm\pm}$ mass400 GeVDY production, $BR(H_L^{\pm\pm} \to \ell\tau) = 1$ spin-1 invisible particle mass657 GeV $a_{non-res} = 0.2$ multi-charged particle mass785 GeVDY production, $ q = 5e$ monopole mass1.34 TeVDY production, $ g = 1g_D$, spin 1	1411.2921 1410.5404 1504.04188
	✓	s = 8 TeV	√s = 13	TeV		10^{-1} 1 10 Mass scale [Te	

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

General remarks and examples

Single production of objects with strong couplings

- Excited quarks, microscopic black holes.....
- Good S/B
- Limits have reached 5-8 TeV.
- Further gains slow with luminosity

Single production with electro weak couplings

- New gauge bosons....
- Good S/B
- Limits have reached 3-6 TeV

Pair production of objects with strong couplings

- Lepto-quarks. gluinis
- 1-2 TeV

_

Dijet resonance search

Events selected with jet trigger

Search for structure in dijet mass: no Monte carlo needed, but data are consistent with expectations

Charged Gauge boson search

Lepton trigger

Looks at transverse mass of lepton and etmiss (neutrino)

Diphoton search

Left over from 2015 excess:

- I recommend this as a use case in a class on how to interpret a result
- Can be interpreted as limit on new spin 0 particle

"Dark Matter" searches

These are all indirect and model dependent.

Basic idea

- Produce dark matter particle in pairs
 - Leaves no energy in detector: Missing ET signature
- Look for visible objects produced in association with DM
 - Any standard model object
 - Jets, photons, quarks, heavy quarks, Higgs
- Measuring something + missing energy
- Relies on proper understanding of
 - Standard model contributions
 - − Z \rightarrow vv, W \rightarrow μ v
 - » Validated from control regions
 - Lost jets, missing ET resolution
- Summary chart follows

Generic approach

"Dark Matter": new search

W/Z decaying to jets produced with DM candidate

"Dark Matter": "mediator model"

"Original" search

Jets+Met

Dominant background is Z decay to neutrinos Validate using leptonic Z and W production

"Dark Matter": model dependent comparison to direct detection

Higgs as a search tool

New particles may decay to Higgs:

- Example of of X->HH
- Prototype for Higgs self coupling in Run-4+

Look for final state with largest Higgs Branching ratio

- 4 Jets with pairwise masses consistent with Higgs
 - B-tagging crucial to reduce QCD backgrounds
 - pt- threshold on jets crucial
 - QCD background is hard to computed
 - Use data driven method

1 C

Higgs as a search tool

ATLAS-CONF-2016-049

- 4 Jets, 3 btagged,
- Consistent with two Higgs bosons
- Look for peak in HH mass
 - Background model from Higgs sidebands

Looking forward

Details will evolve somewhat

- Run-2 has two more years to go
- Notes for 2017
 - No Ion run
 - Later start for collisions than in 2016
 - Comparable integrated luminosity to 2016

LHC roadmap: according to MTP 2016-2020

LS2 starting in 2019

=> 24 months + 3 months BC

LS3 LHC: starting in 2024

=> 30 months + 3 months BC

Injectors: in 2025

=> 13 months + 3 months BC

3rd March 2016

Longer term luminosity

Large increase in luminosity for Run-4 and later

Goal is 3000 fb⁻¹ integrated

Major detector upgrades needed to cope with consequent integrated luminosity

- Maintain thresholds at current values
 - Both at trigger and off-line
- Entirely new tracker
 - Layout not yet fully specified

_

Longer term detector

Slide from Brian Peterson

Overview of Phase-II Upgrades

Overall scope of Phase-II upgrades is mostly settled

Now evaluating different design/implementation options towards submission of TDRs over next 15 months

ATLAS upgrade schedule

Tracker upgrade

Physics goals: New physics

Detailed Standard Model parameters and processes

Most important is Higgs (later)

Measure properties on particles discovered in Run-2

Still waiting

Extend searches.

- Larger masses
- Currently accessible masses, but lower production rates or small branching ratios to observable channels

Long term Physics goals: Higgs

Well defined program

- Observe Η μμ
 - Measure rates to μμ and ττ
- Other rare processes Zg
- Constrain Higgs width
- Constrain Higgs self coupling
 - Measure rate of Higgs pair produce

Higgs to μμ

Limited by background from Drell-Yan production.

Current limit: BR <

Higgs Width

Measure ZZ to 4l for m(4l)>220 GeV

Sensitive to interference and hence Higgs width

_

ATL-PHYS-PUB-2015-024

Higgs pair production

Destructive interference between production diagrams

- Rate is minimized for Higgs self coupling at Standard Model value
- Can begin to constrain coupling into a range as data is accumulated

http://xxx.lanl.gov/abs/1401.7340

Higgs pair production

- Rate is minimized for Higgs self coupling at Standard Model value
- Can begin to constrain coupling into a range as data is accumulate
- Note that total production rate is ~10 fb

http://xxx.lanl.gov/abs/1401.7340

Higgs pair production (bbbb)

Large backgrounds from

- QCD production of 4 bquarks
- Top pair production in association with bb
- (bbbb) mass distribution differs from signal

Channel with largest rates

Challenges

- Acceptance due to trigger thresholds
- Shape of (bbbb) mass distribution not very sensitive
- Systematic uncertainties very important

Higgs pair production (bbyy)

Rate limited

– Small $\gamma\gamma$ branching ratio Much better S/B

Summary

Large backgrounds from

- QCD production of 4 bquarks
- Top pair production in association with bb
- (bbbb) mass distribution differs from signal

Channel with largest rates

Challenges

- Acceptance due to trigger thresholds
- Shape of (bbbb) mass distribution not very sensitive
- Systematic uncertainties very important