Results from ALICE

Christine Nattrass University of Tennessee at Knoxville

Phase diagram of nuclear matter

Quark Gluon Plasma – a *liquid* of quarks and gluons created at temperatures above ~170 MeV $(2.10^{12}K)$ – over a million times hotter than the core of the sun

The phase transition in the laboratory

EMCal & DCal

Δη=1.4,Δφ=107º

Δη=1.4,Δφ=60º Installed in Fall 2014

- Lead-scintillator sampling calorimeter
- 13 k towers 0
- Each tower $\Delta \eta \times \Delta \phi = 0.014 \times 0.014$
- σ(E)/E=0.12/√E + 0.02 ٥

Δη=1.4,Δφ=107º

Δη=1.4,Δφ=60º Installed in Fall 2014

EMCal & DCal

- Lead-scintillator sampling calorimeter ۰
- 13 k towers 0
- Each tower $\Delta \eta \times \Delta \phi = 0.014 \times 0.014$
- σ(E)/E=0.12/√E + 0.02 ٥

p+p collisions

3D image of each collision

Pb+Pb collisions

ALICE Performance

- Low- p_T tracking: down to 150 MeV/c
- PID: anti-³He observed directly

:CE

• Vertexing capabilities: heavy flavors, V⁰, cascades, conversions

Data collection

- Pb–Pb at 5.02 TeV: up to 0.5 nb⁻¹
- pp at 13 TeV and 4 days at 5.02 TeV $(\sim 100 \text{ nb}^{-1})$
- Upcoming p–Pb at 5.02 and 8 TeV: 10 times more statistics than in RUN-I

Charged particle multiplicity

• ALICE: Pb–Pb at 5.02 TeV — highest energy so far

– For 0–5% most central collisions, confirms trend from lower energies

- <d*N*ch/dη> vs. <*N*part>: similar evolution with centrality between 5.02 and 2.76 TeV
	- Provides further constraints for models
	- \sim 20% increase going from 2.76 to 5.02 TeV

Christine Nattrass, US LHC Annual Meeting 2016 **11**

C.F

Energy dependence from dE_{T}/dy

➔ Higher than extrapolations of RHIC data

Direct photons in Pb-Pb collisions

- Low- p_T : 2.6 σ excess w. r. t. models in 0–20% central thermal contribution
- $T_{\text{eff}} = 304 \pm 11 \text{(stat.)} \pm 40 \text{ (syst.)}$ MeV in central Pb–Pb collisions at 2.76 TeV
- 30% higher than at RHIC (Au–Au at $\sqrt{s_{NN}}$ =200 GeV)

ALICE

Relativistic fluids

- Initial overlap asymmetric \rightarrow pressure gradients
- Momentum anisotropy \rightarrow Fourier decomposition:

 d^2N $dp_T d\phi$ \approx 1 + 2 v_1 cos (d ϕ) + 2 v_2 cos (2 d ϕ) + 2 v_3 cos (3 d ϕ) + 2 v_4 cos (4 d ϕ) + 2 v_5 cos (5 d ϕ) + ...

Ratio of v at different energies n

- R_{AA} >1: enhancement R_{AA} <1: suppression
- Strong modification of the spectrum shape in most central collisions
- Strong centrality dependence
- *R*_{AA} at 5.02 TeV similar to 2.76 TeV

Heavy-Flavor R_{AA}

- \bullet Heavy flavor electron R_{pPb} consistent with unity for $p_T > 2$ GeV/c
- \bullet Large suppression at high p_T heavy quark in-medium energy loss
- \mathbf{R}_{AA} (D) and $R_{AA}(\pi)$ compatible with uncertainty at high p_T

- Out-of-cone radiation: energy loss in jet cone
	- Jet yield suppression, di-jet energy imbalance, jet-jet/hadron-jet acoplanarity…
- In-cone radiation: medium modified fragmentation
	- Jet shape broadening, modification of transverse energy profile…
- Consistent with *R*_{AA} of charged particles and charged-jet *R*_{AA} at 2.76 TeV

Hadronic Phase

- Reconstructible resonance yields may be changed by hadronic scattering processes after chemical freeze-out:
	- **Regeneration:** pseudo-elastic scattering of decay products
	- **Re-scattering:**
		- Resonance decay products undergo elastic scattering
		- Or pseudo-elastic scattering through a different resonance (e.g. r)
	- Resonance not reconstructed through invariant mass $\overline{\pi}$ K K* K K π /K π π π π π π K* K* Ω Chemical freeze-out Kinetic freeze-out

Other Resonances

Christine Nattrass, US LHC Annual Meeting 2016 **20**

 C F

Ratios to Stable Hadrons

- Suppression of ρ^{0}/p and K^{*0}/K in central Pb– Pb w.r.t. peripheral, pp, p–Pb, thermal model
	- Suggests that re-scattering is dominant over regeneration
	- Well described by EPOS+UrQMD
- $K^*{}^{0}/K$ in small systems:
	- decreasing trend observed in $p-Pb$ (slope not consistent with 0)
	- Multiplicity-dependent suppression in pp
- No suppression of ϕ/K , no strong centrality dependence
	- Central Pb–Pb consistent w/ thermal model
	- Lifetime of $\phi \sim 10 \times$ longer than K*⁰, $\sim 35 \times$ longer than ρ^0 , re-scattering effects not significant
	- Ratio in $p-Pb$ consistent with trend from pp to peripheral Pb–Pb

Jet mass and virtuality

$$
M \ = \ \sqrt{p^2 - p_T^2 - p_z^2} \qquad \qquad p = \sum_{i=1}^n p_{T_i} \cosh \eta_i, \quad \ p_z \ = \ \sum_{i=1}^n p_{T_i} \sinh \eta_i
$$

- Jet mass increases with the radial distance of the constituents from the jet axis
	- Soft constituents, away from the jet axis within the cone \rightarrow larger mass
	- Few hard constituents \rightarrow smaller mass
	- \rightarrow E.g. gluon vs quark jets jet mass difference

Comparison to models

- Quenching models (JEWEL, Q-PYTHIA) show a larger mass than pp-like PYTHIA jets
	- JEWEL: $2\rightarrow 2$ pQCD matrix elements with parton shower taking into account radiation. For charged jets the background subtraction is implemented by shifting the distribution considering the background estimated for full jets and the difference between full and charged jets in pp
	- Q-PYTHIA: PYTHIA with medium effects in the final state branching through an additive term in the splitting functions computed in the multiple-soft scattering approximation
- JEWEL with "recoil off" (removing recoil centres before hadronization) shows a depletion of the jet mass wrt pp due to less low- p_T fragments wrt recoil on

Pb-Pb measurement can discriminate among these predictions

Conclusions

- Precision tracking and PID enable precision measurements of
	- Global observables (N_{ch}, E_T)
	- Direct photons
	- Hydrodynamical flow
	- Jets
	- Resonances
- More to come!
	- Results from DCal
	- Upgrades for run 3

