

ATLAS Run2 Results

Sarah Demers Yale University

US LHC Users Association Meeting @ LBL Thursday, November 3, 2016

many groups, many people, many results

many groups, many people, many results

• Sarah Demers, Yale *Ian Hinchliffe presented status and exotics results this morning •3

Standard Model Results

Run 2's higher center of mass energy provides a new regime for testing the SM

Larger datasets allow for precision measurements and hunts for rare processes

Some of these measurements take time and an excellent understanding of the data, so some of the most exciting recent SM results are from Run 1

• Sarah Demers, Yale

Standard Model Total Production Cross Section Measurements Sta

Status: August 2016

Standard Model Production Cross Section Measurements

Status: August 2016

Sarah Demers, Yale

Σpp → X7 TeV, 20 μb⁻¹, Nat. Commun. 2, 463 (2011)8 TeV, 500 μb⁻¹, arXiv:1607.0660513 TeV, 60 μb⁻¹, arXiv:1606.02625**Σ**pp → W**Σ**pp → Z / γ*7 TeV, 36 pb⁻¹, PRD 85, 072004 (2012)13 TeV, 81 pb⁻¹, PLB 759 (2016) 601**Σ**pp → tt̄7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C 74:3109 (2014)8 TeV, 20.3 fb⁻¹, arXiv:1606.02699**Σ**pp → tq7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014)9 TeV, 90.0 fb⁻¹ ATI 40.0 CONF. 2014 007

8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2014-007 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2015-079

$\overline{\mathbf{Q}} pp \to H$

7 TeV, 4.5 fb⁻¹, Eur. Phys. J. C76 (2016) 6 8 TeV, 20.3 fb⁻¹, Eur. Phys. J. C76 (2016) 6 13 TeV, 13.3 fb⁻¹, ATLAS-CONF-2016-081

$\overline{\Diamond} pp \rightarrow WW$

7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, arXiv:1608.03086 13 TeV, 3.2 fb⁻¹, ATLAS-CONF-2016-090

$\overline{2} pp \rightarrow WZ$

7 TeV, 4.6 fb⁻¹, Eur. Phys. J. C (2012) 72:2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 3.2 fb⁻¹, arXiv:1606.04017

\checkmark pp $\rightarrow ZZ$

7 TeV, 4.6 fb⁻¹, JHEP 03, 128 (2013) 8 TeV, 20.3 fb⁻¹, ATLAS-CONF-2013-020 13 TeV, 3.2 fb⁻¹, PRL 116, 101801 (2016)

Inclusive jet cross sections, $\sqrt{s} = 13$ TeV

unfolded jet cross sections, NLO predictions

Sarah Demers, Yale

ATLAS-CONF-2016-092

Z + jets cross section, $\sqrt{s} = 13$ TeV

Sarah Demers, Yale

ATLAS-CONF-2016-046 ICHEP, 2016 Result

High Mass Drell Yan cross section, $\sqrt{s} = 8$ TeV

With more data and more time, we can extend the reach to very high mass

IHEP 08 (2016) 009

High Mass Drell Yan cross section, $\sqrt{s} = 8$ TeV

JHEP 08 (2016) 009

b Physics Results

- Efficient tagging of b-quarks is critical within the ATLAS physics program and, as we learned from the TeVatron, hadron colliders have an important role to play in b physics!
- Burden is largely on tracking performance
- We can test the track calibrations by reconstructing the b-quark mass

b Physics Results

When tracking is tuned we can

- tag b-quark jets to select or veto physics processes
- dig into possible sources of CP violation, Flavor changing neutral currents

Recent Results with Run 1 Data

Measurement of the relative width different of the B⁰-B⁰bar system JHEP06 (2016) 081

Study of the rare decays B⁰_s and B⁰ into muon pairs <u>Eur. Phys. J. C 76 (2016) 513</u>

Measurement of the CP-violating phase φ_s and the B_s^0 meson decay width difference with B_s^0 ->J/ $\Psi \varphi$ decays JHEP 2608 (2016) 147

Measurement of $D^{*\pm}$, D^{\pm} and D_s^{\pm} meson production cross sections ($\sqrt{s}=7$ TeV) Nucl. Phys. B907 (2016) 717

• Sarah Demers, Yale

Study of the rare decays B_s^0 and B_s^0 to muon pairs ATLAS: BF(B⁰ ->µ⁺µ⁻) < 4.2 x 10⁻¹⁰ @95% CL CMS + LHCb: BF = 3.9 +1.6 -1.4 x 10⁻¹⁰ ATLAS: BF(B⁰_s ->µ⁺µ⁻) = 0.9 +1.1 -0.8 x 10⁻⁹ CMS + LHCb: BF = 2.8 +0.7 -0.6 x 10⁻⁹

Eur. Phys. J. C 76 (2016) 513 Published Sept 21, 2016 • 15

top Physics Results

top quark mass (Run 1 data)

ATLAS Combination: 172.84 ± 0.70 GeV

top pair production cross section

√*s* [TeV]

SUSY Results

	ATLAS SUSY Searches* - 95% CL Lower Limits Status: August 2016				13 TeV Results	ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$
	Model	e, μ, τ, γ Jets E_{T}^{mbs} f.	£ dt[fb ⁻¹]	Mass limit	$\sqrt{s} = 7,8$ TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$\label{eq:starting} \begin{array}{c} \text{MSUGRACMSSM} \\ \begin{array}{c} \bar{\mathfrak{g}}_{0}, \bar{\mathfrak{g}} \rightarrow \varphi \tilde{\Gamma}_{0}^{b} \\ \bar{\mathfrak{g}}_{0}, \bar{\mathfrak{g}} \rightarrow \varphi \tilde{\Gamma}_{1}^{b} \\ \bar{\mathfrak{g}}_{0}, \bar{\mathfrak{g}} \rightarrow \varphi \tilde{\Gamma}_{0}^{b} \\ \bar{\mathfrak{g}}_{0}, \bar{\mathfrak{g}}_{0},$	$\begin{array}{cccc} 0 - 3 & \kappa, \mu (1 - 2 \ r & 2 - 10 \ jets '3 \ k & \mbox{Yes} \\ & & 0 & 2 \ c \ jets & \mbox{Yes} \\ & & 0 & 2 \ c \ jets & \mbox{Yes} \\ & & 0 & 2 \ c \ jets & \mbox{Yes} \\ & & 0 & 2 \ c \ jets & \mbox{Yes} \\ & & 3 \ \kappa, \mu & 4 \ jets & \mbox{Yes} \\ & & 2 \ \kappa, \mu & 4 \ jets & \mbox{Yes} \\ & & 1 - 2 \ r + 0 - 1 \ \ell & 0 \ 2 \ jets & \mbox{Yes} \\ & & 2 \ \gamma & 1 \ k & \mbox{Yes} \\ & & \gamma & 1 \ k & \mbox{Yes} \\ & & \gamma & 1 \ k & \mbox{Yes} \\ & & 2 \ \epsilon, \mu (Z) & 2 \ jets & \mbox{Yes} \\ & & 0 & \mbox{mono-jet} & \mbox{Yes} \end{array}$	8.8 8.8 13.3 4 13.3 4 13.3 4 13.3 4 13.3 4 13.3 4 13.3 4 13.3 4 13.3 4 3.2 4 20.3 4 20.3 4 20.3 7 20.3 7	1.3 608 GeV 900 GeV 865 GeV	$\begin{array}{c c} \textbf{1.85 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{is TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{m}[i](\text{transform}) \\ \textbf{1.80 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{m}[i](\text{transform}) \\ \textbf{1.80 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{m}[i](\text{transform}) \\ \textbf{1.7 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{1.7 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{1.7 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{1.6 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{1.8 TeV} & \textbf{m}[i](\text{transform}) \\ \textbf{m}[i](\text{transform}) \\ \textbf{1.8 TeV} & \textbf{m}[i](\text{transform}) \\ m$	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05079 1606.00150 1507.05493 ATLAS-CONF-2016-066 1507.05493 ATLAS-CONF-2016-066 1502.01518
2 rd		0 3.b Yes 0-1.⊭,µ 3.b Yes 0-1.⊭,µ 3.b Yes	14.8 8 14.8 8 20.1 8		1.69 TeV m(k ²) −0 GeV 1.69 TeV m(k ²) −0 GeV 37 TeV m(k ²) < 300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2018-052 1407.0600
Generation	$\begin{array}{c} \hat{h}_{1}\hat{h}_{1}, \hat{h}_{1} \rightarrow b\hat{k}^{T}_{1} \\ \hat{h}_{1}\hat{h}_{1}, \hat{h}_{1} \rightarrow d\hat{k}^{T}_{1} \\ \hat{h}_{1}\hat{h}_{1}, \hat{h}_{1} \rightarrow d\hat{k}^{T}_{1} \\ \hat{h}_{1}\hat{h}_{1}, \hat{h}_{1} \rightarrow b\hat{k}^{T}_{1} \\ \hat{h}_{1}\hat{h}_{1}, \hat{h}_{1} \rightarrow b\hat{k}^{T}_{1} \\ \hat{h}_{1}\hat{h}_{1}, \hat{h}_{1} \rightarrow b\hat{k}^{T}_{1} \\ \hat{h}_{2}\hat{h}_{2}\hat{h}_{2}\hat{h}_{1}\hat{h}_{1} \\ \hat{h}_{2}\hat{h}_{2}\hat{h}_{2}\hat{h}_{2}\hat{h}_{1}\hat{h}_{1} \\ \hat{h}_{2}\hat{h}_{2}\hat{h}_{2}\hat{h}_{2}\hat{h}_{1}\hat{h}_{1} \\ \hat{h}_{2}\hat{h}_{2}\hat{h}_{2}\hat{h}_{1}\hat{h}_{1} \neq k \end{array}$	0 2 <i>b</i> Ves 2 e, μ (SS) 1 <i>b</i> Yes 0 $2 e, \mu$ 1 $2 b$ Yes 4.7/ 0 $2 e, \mu$ 0 $2 \text{ jets}^{1} \cdot 2 b$ Yes 4.7/ 0 mono-jet Yes 2 e, μ (Z) 1 <i>b</i> Yes 3 e, μ (Z) 1 <i>b</i> Ves 1 e, μ 6 jets + 2 <i>b</i> Yes	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	840 GeV 325-685 GeV 200-720 GeV 90-323 GeV 150-600 GeV 290-700 GeV 320-620 GeV	$\begin{split} m \tilde{k}_{1}^{n} <100GeV\\ m \tilde{k}_{1}^{n} <150GeV,m(\tilde{k}_{1}^{n} =m(\tilde{k}_{1}^{n})+100GeV\\ m \tilde{k}_{1}^{n}\rangle&=2m(\tilde{k}_{1}^{n}),m \tilde{k}_{1}^{n} =85GeV\\ m \tilde{k}_{1}^{n}\rangle&=1GeV\\ m \tilde{k}_{1}^{n} -m(\tilde{k}_{1}^{n})=6GeV\\ m \tilde{k}_{1}^{n}\rangle&=100GeV\\ m \tilde{k}_{1}^{n}\rangle&=300GeV\\ m \tilde{k}_{1}^{n}\rangle&=300GeV\\ m \tilde{k}_{1}^{n}\rangle&=0GeV \end{split}$	1608.08772 ATLAS-CONF-2018-037 1209.2102, ATLAS-CONF-2016-077 1906.08618, ATLAS-CONF-2018-077 1604.07773 1403.5222 ATLAS-CONF-2018-038 1506.08816
EW Direct	$\begin{array}{c} \tilde{c}_{1,k}\tilde{c}_{1,k},\tilde{c}_{1}\rightarrow \tilde{k}_{1}^{R}\\ \tilde{r}_{1}^{*}\tilde{r}_{1},\tilde{r}_{1}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{r}_{1},\tilde{r}_{1}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{r}_{2}^{*}\rightarrow\tilde{u}_{1}^{*}\tilde{u}_{2}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{r}_{2}^{*}\rightarrow\tilde{u}_{1}^{*}\tilde{u}_{2}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{r}_{2}^{*}\rightarrow\tilde{u}_{1}^{*}\tilde{u}_{2}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{r}_{2}^{*}\rightarrow\tilde{u}_{1}^{*}\tilde{u}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{r}_{2}^{*}\rightarrow\tilde{u}_{1}^{*}\tilde{u}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{r}_{2}^{*}\rightarrow\tilde{u}_{1}^{*}\tilde{u}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{u}_{2}^{*},\tilde{r}_{2}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{u}_{1}^{*},\tilde{r}_{2}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{u}_{1}^{*},\tilde{r}_{2}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{u}_{1}^{*},\tilde{r}_{2}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{u}_{1}^{*}\tilde{u}_{2}^{*},\tilde{r}_{2}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{u}_{1}^{*}\tilde{u}_{2}^{*},\tilde{r}_{2}^{*}\rightarrow\tilde{r}_{1}^{*}\ell(r)\\ \tilde{r}_{1}^{*}\tilde{u}_{1}^{*}\tilde{u}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{1}^{*}\tilde{u}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{1}^{*}\tilde{u}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{1}^{*},\tilde{r}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{1}^{*},\tilde{r}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{2}^{*},\tilde{r}_{1}^{*},\tilde{r}_{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i i 13.3 i_{1}^{*} 14.3 i_{1}^{*} 13.3 i_{1}^{*} 20.3 i_{1}^{*} 20.3 $i_{1,3}^{*}$ 20.3 $i_{1,3}^{*}$ 20.3 $i_{2,3}^{*}$ 20.3 $i_{2,3}^{*}$	90-335 GeV 580 GeV 1.0 TeV 425 GeV 270 GeV 035 GeV 115-370 GeV 590 GeV	$\begin{split} m[\tilde{k}_{1}^{2}] &= 0 \text{GeV} \\ m[\tilde{k}_{1}^{2}] &= 0 \text{GeV} (m[\tilde{k}_{1}^{2}] + m[\tilde{k}_{1}^{2}]) \\ m[\tilde{k}_{1}^{2}] &= 0 \text{GeV} (m[\tilde{k}_{1}^{2}] + m[\tilde{k}_{1}^{2}]) \\ m[\tilde{k}_{1}^{2}] &= 0 \text{GeV} (m[\tilde{k}_{1}^{2}] + m[\tilde{k}_{1}^{2}]) \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = 0, \text{for accupted} \\ m[\tilde{k}_{1}^{2}] &= m[\tilde{k}_{1}^{2}], m[\tilde{k}_{1}^{2}] = m[\tilde{k}_{1}^{2}], $	1403 5294 ATLAS-JCONF-2016-096 ATLAS-JCONF-2016-098 ATLAS-JCONF-2016-098 1403 5294, 1402 7029 1501 07110 1405 5086 1507 05493
Long-lived Particles	$\label{eq:constraint} \begin{array}{c} \label{eq:constraint} \begin{array}{l} \begin{array}{l} \mbox{Direct}\ensuremath{\xi}^{*}\ensuremath{\xi}^{*}\ensuremath{g}^{*}\ensuremat$	$ \begin{array}{cccccc} & \chi_1^* & \text{Disapp. trk} & 1 \ \text{jet} & \text{Ves} \\ & \chi_1^* & \text{dE/dx trk} & & \text{Ves} \\ & 0 & 1-5 \ \text{jets} & \text{Ves} \\ & \text{trk} & & & \\ & & & & \\ & & & & \\ $	20.3 \$\$\$^{*}_{-}\$ 18.4 \$\$\$\$, 27.9 \$\$\$\$ 3.2 \$\$\$\$ 3.2 \$\$\$\$ 19.1 \$\$\$\$\$\$\$\$\$\$\$ 20.3 \$	270 GeV 495 GeV 850 GeV 537 GeV 440 GeV 1.0 TeV 1.0 TeV	$\begin{split} m(k_1^*) + m(k_1^*) + 160 \ MeV, \ \pi(k_1^*) + 0.2 \ ns \\ m(k_1^*) + m(k_1^*) + 160 \ MeV, \ \pi(k_1^*) + 15 \ ns \\ m(k_1^*) + 160 \ MeV, \ \pi(k_1^*) + 15 \ ns \\ m(k_1^*) = 100 \ GeV, \ To MeV \ \pi(k_1^*) + 10 \ ns \\ 1.07 \ TeV \ m(k_1^*) = 100 \ GeV, \ To MeV \ \pi(k_1^*) + 10 \ rs \\ 10 \ ctag(k_1^*) \leq 3 \ ns, \ SPS8 \ model \\ 1 \ ctag(k_1^*) \leq 3 \ rs, \ \pi(k_2^*) = 1.3 \ TeV \\ 8 \ ctag(k_1^*) \leq 30 \ rm, \ \pi(k_2^*) = 1.3 \ TeV \\ 8 \ ctag(k_1^*) < 40 \ rm, \ \pi(k_2^*) = 1.3 \ TeV \end{split}$	1310.3675 1508.05332 1310.8684 1608.05129 1604.04520 1411.8705 1409.2542 1504.05182 1504.05182
RPV	$ \begin{array}{c} LFV \rho_{\mathcal{F}} \rightarrow \mathfrak{f}_{r} + \chi, \mathfrak{h}_{r} \rightarrow \mathfrak{g}_{r} / \mathfrak{e}_{r} / \mathfrak{g}_{r} \\ Binear \ FPV \ CMSSM \\ \mathfrak{K}_1^* \mathcal{K}_1^* \rightarrow \mathfrak{K}_1^* / \mathfrak{K}_1^* \mathcal{K}_1^* - \mathfrak{e}_{r} \mathfrak{e}_{r} / \mathfrak{k}_1^* \\ \mathfrak{K}_1^* \mathcal{K}_1^* \rightarrow \mathfrak{M}_1^* \mathcal{K}_1^* - \mathfrak{e}_{r} \mathfrak{e}_{r} \\ \mathfrak{K}_1^* \mathcal{K}_1^* \mathcal{K}_1^* \rightarrow \mathfrak{M}_1^* \\ \mathfrak{K}_2^* \mathcal{K}_1^* \mathcal{K}_1^* \rightarrow \mathfrak{H}_2^* \\ \mathfrak{K}_2^* \mathcal{K}_1^* \mathcal{K}_1^* \rightarrow \mathfrak{K}_2^* \\ \mathfrak{K}_2^* \mathcal{K}_1^* \mathcal{K}_1^* \rightarrow \mathfrak{K}_2^* \\ \mathfrak{K}_1^* \mathcal{K}_1 \rightarrow \mathfrak{K} \\ \mathfrak{K}_1^* \mathcal{K}_1 \rightarrow \mathfrak{K} \\ \mathfrak{K}_1^* \mathcal{K}_1 \rightarrow \mathfrak{K} \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2 5. 20.3 5. 13.3 5. 14.8	450 GeV 1.14 Te 1.08 Te 410 GeV 410 GeV 0.4-1.0 TeV	1.9 TeV J _{int} = 0.11, J _{122(120)=20.07} 1.45 TeV m(k ⁰)=b40CeV, J ₁₂₂ ≠ 0 (k = 1, 2) m(k ⁰)=b40CeV, J ₁₂₂ ≠ 0 (k = 1, 2) m(k ⁰)=b2×m(k ⁰), J ₁₂₂ ≠ 0 1.55 TeV m(k ⁰)=b60 (e = 1, 2) m(k ⁰)=b70 (e = 1, 2) 1.55 TeV m(k ⁰)=b70 (e = 1, 2) 1.75 TeV m(k ⁰)=b70 (e = 1, 2) 1.4 TeV B2CeV BR(y ₁ , -ide /µ) < B50 CeV	1607.08079 1404.2500 ATLAS-CONF-2018.075 1405.5096 ATLAS-CONF-2018.057 ATLAS-CONF-2018.057 ATLAS-CONF-2018.094 ATLAS-CONF-2018.094 ATLAS-CONF-2018.094 ATLAS-CONF-2018.094 ATLAS-CONF-2015.015
	Other Scalar charm, $\bar{c} \rightarrow c \hat{\chi}_1^0$	0 2 c Yes	20.3	510 GeV	m(K ⁰ ₁)<200 GeV	1501.01325
 Sarah Demers, Veril eselection of the available mass limits on new 10⁻¹ 10⁻¹ 11 Mass scale [TeV] 22 11 TeV 						

$\sqrt{s} = 13$ TeV: 12 submitted papers, 20 conference notes

Missing Transverse Energy + 1-2 tau Missing Transverse Energy + di-photons Missing Transverse Energy + 2 b-quarks

Zero leptons + 7-10 jets Zero leptons + 2-6 jets

One lepton + **2-6 jets** One lepton **stop**

multiple **b-jets**

monojet

LLP w/ pixel+Tile LLP w/ pixel dE/dx

two or three **same-sign leptons**

SUSY Searches can be categorized in many ways. A convenient one is by final state particles.

Here are the <u>12 submitted</u> <u>papers</u> at $\sqrt{s} = 13$ TeV, each with a 3.2 fb⁻¹ dataset.

Search for squarks and gluinos in events with τ_{had} , jets and MET

Select events with a MET (>180 GeV) + jet (>120 GeV) trigger

Sarah Demers, Yale

SUSY-2016-01 (submitted to EPJC)

Search for squarks and gluinos in events with τ_{had} , jets and MET

Analysis divided into two mutually exclusive channels:

1 tau AND \geq 2 taus

<u>GMSB Model Parameters</u> - SUSY-breaking scale in messenger sector (Λ)

- tanβ
- messenger mass scale = 250 TeV
- # of mess. multiplets = 3
- sign of Higgsino mass term in superpotential = 1
- gravitino mass scale factor = 1

<u>Simplified Model Parameters</u> gluino and LSP masses

1 tau channel: 3 signal regions compressed, medium mass, high mass

≥ 2 tau channel: 3 signal regions compressed, high mass, GMSB

Search for squarks and gluinos in events with τ_{had} , jets and MET

Search for squarks and gluinos in events with τ_{had} , jets and MET

•27

Higgs Results

Where we stood with Run 1 Data:

Looking quite SM-like, but uncertainties were still large.

(Higgs Summary Plot)

Sarah Demers, Yale

released 12.01.2015

Higgs re-discovery at $\sqrt{s} = 13$ TeV

Run 2 Production and Decay

ATLAS-CONF-2016-081

Parameter value norm. to SM value

Sarah Demers, Yale

Run 2 Production and Decay

• Sarah Demers, Yale

Parameter value norm. to SM value

Run 2 (√s=13 TeV) Higgs Results

Most recent paper submissions demonstrate that we are in an era of using the Higgs boson to hunt for new physics...

Search for MSSM Higgs bosons H/A and for a Z' boson in the $\tau\tau$ final state Accepted by EPJC <u>http://arxiv.org/abs/1608.00890</u>

Search for new resonances decaying to a W or Z boson and a Higgs boson in the eebb, evbb, vvbb channels Submitted to PLB <u>http://arxiv.org/abs/1607.05621</u>

Search for Higgs and Z boson decays to φγ Submitted to EPJC <u>https://arxiv.org/abs/1607.03400</u>

Search for the Higgs boson produced in association with a W boson and decaying to four b-quarks via two spin zero particles Accepted by EPJC <u>https://arxiv.org/abs/1606.08391</u>

Many other ATLAS results are presented at this meeting!

Ian Hinchliff: ATLAS Status and Outlook Rachel Hyneman: Search for a high mass diphoton resonance Mazin Khader: Analysis strategy/tools for a low mass H->2a -> 4b search William Mccormack: Pixel Cluster Counting Luminosity Measurement Samuel Meehan: Dark Matter, the Higgs and Jet Substructure Qi Zeng: Searches for Resonances Decaying to VH/HH Matthew Epland: Machine Learning Calibration of Large Radius Jets Dayton Grogan: Multivariate Jet Calibration Using Neural Networks Maximilian Swiatlowski: Searches for natural supersymmetry in multi-b final states Haichen Wang: Search for new physics in high multiplicity hadronic final states Rui Wang: Heavy resonance search using b-tagged di-jets

Conclusions

We continue to learn a tremendous amount from Run 1 data

Run 2's higher energy and larger datasets are already paying off in searches and in some measurements

Thanks for your attention!

http://lonestarartisans.com/this-is-a-marathon-not-a-sprint/