

Radiation Effect Studies on ALPIDE at 88" Cyclotron

Joanna Szornel

US LHC User's Meeting

November 2016

UNIVERSITY OF CALIFORNIA

The ALICE Experiment

ALICE Inner Tracking System (ITS) Upgrade

7-layer barrel geometry

- r coverage: 23-400 mm
- η coverage: |**η**| ≤ 1.22
- 3 Inner Barrel layers (IB),
 4 Outer Barrel Layers (OB)
- Material/layer:
 0.3% X₀ (IB)
 0.8% X₀ (OB)
- To be installed 2020

The new ITS will allow the study of:

- Thermalization and hadronization of heavy quarks in Quark Gluon Plasma (QGP)
- Heavy quark in-medium energy loss and its mass dependence
- Thermal radiation from Quark Gluon Plasma (QGP) via photons detected as di-electrons

ALPIDE (ALICE PIxel DEtector)

- Designed for the new Inner Tracking System
- Monolithic Active Pixel Sensor (MAPS) technology
 - Sensitive volume and front end electronics in the same silicon wafer
 - Lower pixel pitch, extremely low material budget
- Each pixel contains analog and digital sections
- Characterized single event effects for ALPIDE prototypes
 - Single Event Latch-ups for ALPIDE-1, ALPIDE-3, ALPIDE-4
 - Single Event Upsets for ALPIDE-4

ALPIDE block diagram showing matrix (blue, orange) and periphery (purple)

Single Event Latch-up (SEL)

- Common problem with CMOS technology
- A heavy ion travels through and creates a low impedance path, which results in an uncontrolled increase in current
- The parasitic structure exhibits positive feedback and will continue to exist unless power-cycled

STAR HFT pixel layers deconstructed and imaged (with SEM). Layers appear to have melted.

• Can cause permanent damage

USLUA 2016, LBNL, November 2016

Joanna Szornel | jszornel@berkeley.edu

ALPIDE SEL Tests

Use cocktail beam at 88-inch cyclotron with various ions with different Linear Energy Transfer (LET) values.

Objectives:

 Determine ALPIDE-4 SEL sensitivity and compare with previous prototypes (ALPIDE-1, ALPIDE-3)

Study current profiles

These tests helped identify regions particularly susceptible to latch-up and find design changes to mitigate latch-up sensitivity

ALPIDE-1		ALPIDE-4	
lon	LET (MeV cm²/mg)	lon	LET (MeV cm²/mg)
Ne	5.77	Ne	2.39
Si	9.28	Ar	7.27
Ar	14.32	V	10.9
V	21.68	Cu	16.53
Kr	39.25		
Y	45.58		
Xe	68.84		
Tb	77.52		

ALPIDE-1 and ALPIDE-4 SEL Results

ALPIDE-4 has decreased susceptibility to latch-up, compared to ALPIDE-1

Relative Latch-ups

- In ALPIDE-1, latch-ups in analog blocks were prevalent
- In ALPIDE-4, latch-ups seen only in digital blocks

Single Event Upset (SEU)

SEU: An ionizing particle causes a bit flip in a register

Goals:

- Determine cross section for SEU
- Study dependency of cross section on bias voltage
- Tests performed on:
 - In-pixel mask registers
 - memories

ALPIDE Block Diagram

USLUA 2016, LBNL, November 2016

Joanna Szornel | jszornel@berkeley.edu

SEU Memory Cross Sections

In the memory block tested:

- 1 → 0 bit flips are more likely than
 0 → 1 bit flips
- Bias voltage affects cross section

SEU Mask Bit Cross Sections

Masked \rightarrow Unmasked Cross Sections

In the mask registers:

- ALPIDE-4 has similar cross sections to ALPIDE-3 (as expected)
- Bias voltage affects cross section

Cross Section (cm²)

Summary

For ALPIDE prototypes characterized cross section for:

- Single Event Latch-ups
- Single Event Upsets

ALPIDE-4 has decreased susceptibility to latch-up, compared to ALPIDE-1

- Improvement at high LET values
- Analog cross sections improved at all LET values

Bit flips in memories and mask registers show dependence on bias voltage. This is currently being studied.

Backup

USLUA 2016, LBNL, November 2016

Single Event Latch-up (SEL) Mitigation

Contact area of the p⁺ wells inside the matrix was increased to reduce the resistance to the substrate, which reduces the gain of the parasitic circuit which initiates a latch-up.

ALPIDE-3 SEL Results

ALPIDE-3 SEL Results

