Multivariate Jet Calibration Using Neural Networks

-Dayton Grogan

-Duke University

Large-Radius Jets

Why do we care?

- Provides simplified event reconstruction
 - Jet $energy \rightarrow mass scale of the process$
 - Jet mass → identity of particle
- •Understanding scale and resolution is important!

Energy Calibration

- Calibration function, $R \approx \frac{True\ energy}{Reconstructed\ energy}$
- true $pT \approx R(\underbrace{Jet pT}, \eta) \times reconstructed pT$
- Does more information give more precision?
- Limitations
 - not very practical
- → Use Neural Networks!

Neural Networks

Why Neural Nets?

- •Accommodates many variables
- Easily updatable

Network Training

- •Input: simulated data
- •Output: calibration factor R
- loss function: $L2 = (\frac{true pT}{reco pT} R)^2$

Simulated data sample:

- simulated di-jet events
- $p_T > 200 \text{ GeV}, |\eta| < 2.0$
- matched geometrically to true jet

Network Configuration

Many options!

- Number of layers
- Number of nodes (neurons)
- activation functions
- Propagation algorithms

Does it matter?

- ·Yes!
- Effects on runtime and convergence

Epoch: one forward pass and one backward pass of *all* training examples

Impact of Structure: Layers

- Multiple layers may improve convergence
- •Runtime increased by factor of 2.5/epoch
- •Still effective to use a single layer

Impact of Structure: Nodes

- Performance not correlated with nodal number
- More input variables requires more nodes

Final Network Structure

Network Parameters

• Number of layers: 1

• Number of nodes per layer: 20-50

• Activation function: Tanh

• Propagation algorithm: Adam

Preliminary Results

So, how are we doing?

- •Successfully calibrated!
- •convergence occurs within 10,000 epochs and takes roughly 2 hours.

Preliminary Results

How do we compare?

•NN looks very similar to by-hand JES calibration

Future Directions

- Formalize optimization strategy and find optimal p_T calibration
- Repeat studies with new (jet substructure) input variables and less generic jets
- Expand strategy to calibrate other observables
 - particularly jet mass!

Backup Slides

Impact of Structure: Activation Function

- Relu (rectified linear unit)
- Sigmoid and tanh are more comparable

Back up Slides: Layers

Layers	Final Training MSE	Final Validation MSE	Training time
1	378.272	67.8496	107 sec
2	362.789	83.2652	189 sec
3	360.262	85.7885	250 sec
4	360.221	85.7614	290 sec

ATLAS work in progress

Backup Slides: Layers

- Convergence is comparable among the different layers
- Only see difference when lower numbers of nodes are used

Backup Slides: Propagation algorithm

- although there are strong early fluctuations away from best calibration, Adam converges fastest
- •Other algorithms are smoother, but may be susceptible to getting stuck in a local minimum.

Backup Slides: Calibration Comparison

