DISCOVERING HIDDEN SECTORS WITH LONG-LIVED PARTICLES

Brian Shuve — SLAC

LHC Users Meeting @ LBL — 4 November 2016

Plentiful evidence for new dark particle(s) that interact very feebly with the SM:

2

Thermal DM models connect abundance with mass & coupling:

(thermal)

Light DM & Dark Sectors

Signatures:

• Low-mass particles need a kick to be seen

• New particles are often boosted

• Can often get **long lifetimes** due to combination of small mass ratios, mixing angles, ...

$$c\tau(\pi^{\pm}) \sim 10 \text{ m}$$
 $c\tau(D^{\pm}) \sim 0.1 \text{ mm}$

c.f. hidden valleys (Strassler, Zurek 2006)

Compelling Example: 2-state dark matter

Inelastic dark matter

Tucker-Smith, Weiner, hep-ph/0101138

- 2 nearly degenerate "dark" states
- Representative of many hidden sectors

Compelling Example: 2-state dark matter

Concrete model: dark photon

• *Distinctive signal:* collimated, soft, displaced dimuon aligned with MET

Compelling Example: 2-state dark matter

 χ_1^0

jet

 χ_2^{\pm}

- heavier state decays to soft pion, otherwise invisible
- use photon radiation from longlived charged state!

Ismail, Izaguirre, BS, arXiv:1605.00658

Summary

 New searches at the LHC and low-energy experiments can discover striking signals of new physics that would otherwise be missed!

Complement existing searches for high-mass or pairs of displaced objects

 Many examples of other long-lived particles searches for hidden sectors giving neutrino masses, baryon asymmetry, etc.
e.g., arXiv:1504.02470, arXiv:1604.0699, arXiv:1409.6729, ...

Back-up slides

Extended Dark Sectors

- We can also have dark sectors with a new force/interaction
- *E.g.*, inelastic dark matter

Bai, Tait, 1109.4144; Izaguirre, Krnjaic, BS 1508.03050

Extended Dark Sectors

• We consider

$M_{\chi} < M_{A'}$

y is "effective coupling"

Improving the Searches

- Get displaced decay!
- The leptons are typically soft, so trigger on monojet + MET
- The DM produced through on-shell A', so typically boosted

12

Displaced/Boosted Signatures

Leptonic backgrounds expected to • be negligible

LHC Results

- Monojet + MET
- Soft dimuon vertex (>1 mm vtx. location and impact param, pT > 5 GeV), close together and aligned with MET
- Backgrounds very low; sensitivity for **10 signal events** (300/fb)

Izaguirre, Krnjaic, BS 1508.03050

Simplest Example: New EW Multiplet

 One of the simplest dark matter scenarios ("minimal DM") Cirelli, Fornengo, Strumia, hep-ph/0512090

- Expected in **natural** weak-scale theories (SUSY)
 - e.g. Higgsino doublet

 (χ^+,χ^0)

• Electroweak symmetry ensures states are nearly degenerate

Stoker *et al.*, 1989; Chen *et al.*, 1995; Thomas, Wells, hep-ph/9804359, ...

Higgsino Doublet

- With minimal splittings, dominant decay mode is $\chi^{\pm} \rightarrow \chi^{0}$
- "Charged" particle is invisible!

Higgsino Doublet

Use fact that "invisible" particles are actually charged

- Can get soft photon correlated with MET direction
- Take hit in signal rate to improve *S*/*B*

Higgsino Doublet

• Subdominant W background becomes very important

$$M_{\rm T} = \sqrt{2E_{\rm T}^{\gamma} \not\!\!\!E_{\rm T}} [1 - \cos \Delta \phi(\gamma, \not\!\!\!\!E_{\rm T})]$$

 Photon direction more correlated with MET for signal

Higgsino Doublet Results

• Optimize over other kinematic cuts (MET, jet *p*_T, etc.)

HL-LHC

solid = 5% syst. dotted = 2% syst.

Quintuplet Results

an also consider other states, like a quintuplet with Y = 0

80

200

With 20/fb, competitive with current bound (~400 GeV in comb.)

