

PHIN

REPORTED BURGER

CALIFES

The 2 CTF3 Photoinjectors

MASSIMO PETRARCA CERN

...on behalf of CTF3 photoinjector community

CERN 22 April 2009

Outline

- CLIC & CTF3
- CTF3 electron sources
- Photoinjectors
 - Photoemission & cathode
 - Photoinjector laser
- PHIN photoinjector
- CALIFES photoinjector

CLIC

CLIC ("Compact" Linear Collider): is a study for a future **electron-positron collider**

goal: electron-positron collision with nominal center-of-mass energy of **3 TeV + "compact"** machine

Two-beam acceleration concept:

Two-beam acceleration concept:

Klystron sources accelerate the "drive beam" (low frequency e-bunch distribution)

A dedicate machine for frequency multiplication yields : bucket with High frequency (12GHz) substructure

> Special power extraction structure: PETS decelerate the buckets→ RF @ HIGH freq. and power

Extracted power Used to accelerate the so called: "main beam"

SPECIAL THANKS to Alexandra Andersson who produce the wonderful animation... THANKS

CTF3:

CTF3 (CLIC test facility 3rd) small version of CLIC power source

CTF3 electron sources:

Drive beam: thermionic gun produces a continuous e-beam which is opportunely modulated to obtain the bunched structure

Main beam: electron bunches produced by a laser based e-gun (generally named photoinjector) for the "CALIFES" "main" accelerator

A second photoinjector "PHIN" is under test: could it replace the Drive Beam thermionic gun ? \rightarrow simplification of the drive beam generation scheme with reduction of losses <u>due to the already bunched structure generated by</u> photoinjectors

Outline

- CLIC & CTF3
- CTF3 electron sources
- Photoinjectors
 - Photoemission & cathode
 - Photoinjector laser
- PHIN photoinjector
- CALIFES photoinjector

Photoinjectors

Since 1985 when the photoinjectors concept has been introduced their used grown exponentially!

They offer a good handle of the initial condition i.e. transverse and longitudinal distribution of the electron bunches.

Initial condition is controlled by the laser properties i.e. pulse length ,spot size energy

Principles: laser pulses illuminate

a **photocathode** generating **e-bunches** by photoelectric process The cathode is placed into an

accelerating structure to properly extract the electron bunches i.e

Multi-cell rf gun cavity with high peak electric field to reduce space charge effect

Choice of photoinjector elements

Photoemission

Photoemission process plays an important role in photoinjectors: the physics of *Metal and Semiconductor* puts constraints on the choice of the cathode to be used

If $hv > E_G$, the photon can be absorbed and converted in free electron; to escape into vacuum e-energy > E_A (electron affinity)

Tot required energy: $E_{G} + E_{A}$.

Photoemission differences:

	Metal	Semiconductor	
	Mg, Copper	GaAs,Cs ₂ Te (cesiumtelluride)	
Summary	Low efficiency ~10 ⁻⁴ High efficiency ~10 ⁻²		
	Fast response time ~10 ⁻¹⁵ ,	Slower time response ~10 ⁻¹² , sensitivity to contamination,	
	Resistant to	Response to visible and IR	
	contamination	laser	

number of bunches	PHIN 1908	
macro bunch beam current [A]	3.5	Semiconductor cathode
bunch spacing [ps]	666.7 (1.5GHz)	Cs ₂ Te
charge per bunch [nC]	2.3	Y

Cern hosts a photoemission laboratory which is a dedicated facility to study different cathodes

- DC gun (8MV/m)
- •Electrode gap:1cm
- •1x10⁻¹¹<p<1x10⁻¹⁰ mbar
- •4 mm laser spot

In the precedent years different cathodes have been tested:

metal cathode \rightarrow rejected (low efficiency)

Alkali photocathode (semiconductor) has been studied in more details:

	1	<i>able 4</i> : Alkal	i photocatho	des: QE = f	(\$)	
λ (nm)	193	213	266	355	532	Ea + Eg
E (eV)	6.42	5.82	4.66	3.49	2.33	eV
Cs-Sb		3.5×10 ⁻²	2.0×10 ⁻²	1.8×10 ⁻²	3.8×10 ⁻³	2.0
K.Sb		1.4×10^{-2}	1.6×10 ⁻²	7.6×10 ⁻³	2.3×10-4	2.3
Na-KSb		7.7×10-2	6.1×10 ⁻²	3.5×10 ⁻²	2.0×10-4	2.0
Ćsl	9.6×10 ⁻²	6.8×10 ⁻²	7.1×10 ⁻⁵	1.9×10 ⁻⁶		6.4
CsI + Ge		7.3×10 ⁻³	1.3×10^{-3}	2.0×10 ⁻⁶		5.0
Cs.Te		6.0×10 ⁻²	5.7×10 ⁻²	2.0×10-4		4.5

→ Ce2Te is so far the most useful cathode:

1) high quantum efficiency

2) acceptable life time: longer than the time needed to produce and make available 4 new cathodes → less than 4days

Tests in Rf gun at 100MV/m; pressure2x10⁻⁹<P<7x10⁻⁹ mbar, showed that after full 12 working hours per day after 4 days (~50h) \rightarrow QE~ 3% within specification and it keeps this value over more than 100h. QE=3% reference value in project specification

The photoemission laboratory has been equipped for the production of Ce2Te:

Photocathode conclusion

- Ce₂Te semiconductor cathode has been selected for the commissioning of CTF3 photoinjectors due to its acceptable life time and high quantum efficiency
- A good vacuum condition ~10⁻¹⁰ mbar is required to preserve the cathode performance
- A transport carrier under vacuum (down to ~10⁻¹¹ mbar) need to be used to transport the new cathode from the photoemission laboratory to the PHIN gun installation

Outline

- CLIC & CTF3
- CTF3 electron sources
- Photoinjectors
 - Photoemission & cathode
 - Photoinjector laser
- PHIN photoinjector
- CALIFES photoinjector

From laser to electron:

In photoinjectors the laser time structure is transferred into the electron time structure

Phase coding:

Being the laser time structure transferred into the electron time structure

> The laser time distribution must have this profile

 $\Delta t_{m} = 1.27 \ \mu s; 1.5 \ GHz$ Delay loop 140 ns 140 ns; 3.5A 3GHz; 7A x2 180 deg phase shift ~333ps Laser ~999ps

An optical device "Phase Coding" has to be implemented in the laser chain !!

Device is not installed:

Losses too high \rightarrow need a second booster amplifier.

Feasibility study of the Phase Coding on the final laser must be performed

(It has been studied on a 100MHz laser Nd:Yag laser)

Ngjr → Rod 12 cm long; 1 cm diameter

for water

cooling

HARMONIC CONVERSION TABLE

HARMONIC CONVERSION

Ce-Te cathode required laser wavelength λ ~262 nm

Nd:Ylf : λ ~1047nm need to be converted in a two stages non linear process by crystals

	GREEN micro pulse energy	UV micro pulse energy
Amp1 + Amp2 @ full power	1.3 μJ ~29% conversion	->330nJ in a micro pulse ~24%conversion ~243nJ on cathode due to transport line ~370nJ on specs

With this beam the commissioning of both "PHIN" and "CALIFES" photoinjector has started and already showing satisfactory performance

Laser: Conclusion& Future

- A stable beam has been produced and it is being used in the two CTF3 photoinjectors. Nevertheless the UV laser energy has to be improved to reach the project specification:
 - PHIN→ ~370nJ on cathode (~250nJ now); CALIFES→600nJ (~290nJ now)
- Modifications of the second amplifier & harmonic conversion scheme are under development
- •A feedback system needs to be studied and implemented to increase the intensity stability <1% for UV (~2% now!)
- The phase coding = fiber based interferometer device to obtain the proper drive beam time structure is not yet installed; it requires detailed studies about how to it performs on our laser and how to be properly implemented in the system
 Laser to RF synchronization: jitter measured ~630fs-> satisfactory! (specs <1ps)

Outline

- CLIC & CTF3
- CTF3 electron sources
- Photoinjectors
 - Photoemission & cathode
 - Photoinjector laser
- PHIN photoinjector
- CALIFES photoinjector

Acknowledgements

 We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

PHIN photoinjector

	PHIN
RF frequency [GHz]	2.9985
RF power [MW]	30
beam energy [MeV]	5-6
beam current [A]	3.5
number of bunches	1908
bunch spacing [ps]	666.7
charge per bunch [nC]	2.3
repetition rate [Hz]	5
bunch length FWHM [ps]	< 10
rms. energy spread [%]	< 2
n. emittance [π mm mrad]	< 25
vacuum pressure [mbar]	< 2 x 10 ⁻¹⁰

Cathode loader

Important to install the Ce-Te cathode which require high vacuum to preserve its performance

28 MW - 32kV

Envelope scan : Beam size vs Solenoid current

Charge: 1.5nC Laser Spot Size: 2mm(FWHM)

Envelope scan : Beam size vs Solenoid current

Emittance measurements & definition

Emittance : quality factor for electron beam = transverse size x momentum angular divergence It says how much the beam is collimated

Scan Emittance vs Solenoid

PHIN preliminary results

An Example of Emittance Measurement Analysis

Beam loading effect

PHIN photoinjector: Conclusion& Future

	PHIN design	February 2009
RF frequency [GHz]	2.9985	2.9985
beam energy [MeV]	5-6	5.3
beam current [A]	3.5	~3.4
		~2
number of bunches	1908	>1908
charge per bunch [nC]	2.3	2.3 \longrightarrow For 500ns macro bunch ; constant
repetition rate [Hz]	5	0.8 ~1.5nC
n. emittance [π mm mrad]	< 25	ok
cathode QE	3%	3% <qe< 4%<="" td=""></qe<>
vacuum pressure [mbar]	< 2 x 10 ⁻¹⁰	< 4 x 10 ⁻⁹

PHIN photoinjector: Conclusion& Future

Preliminary measurement obtained in a week.....!!!

- Study of beam energy spread (improvement of diagnostic)
- •Gas analysis
- •Nominal charge @ nominal macro bunch length (~1270ns)
- •QE map studies over many hour of working time
- Emittance measurement @ full current (2.3 nC for 1908 micro bunches)
 Phase coded beam

••••

CALIFES RF Gun

Measures of beam current, size, position, energy as function of phase, focusing coils field, laser spot position on photocathode...

- Laser pulses 7 ns (10 micro bunches)
- QE = 0.5%, 0.2 nC/bunch specs requires 0.6 nc
- UV Laser energy/bunch: 0.20 µJ (nominal 600nJ)

CALIFES beam reached for the first time the end of the TBTS line

Special thanks to:

- Steffen Doebert, Oznur Mete, Eric Chevallay
- Anne Dabrowski, Thibaut Lefevre and al the diagnostic group
- Alessandro Masi, Christophe Claude Mitifiot and all the electronics group
- W. Farabolini, Guy Cheymol, R. Roux and al the CEA/LAL group
- Louis. Rinolfi, Jonathan Sladen, Konrad Elsener
- Marta Divall, Simone Cialdi (Univ. of Milan)
- Valentine Fedosseev (STI/LPsection leader), Roberto Losito (EN/STI group leader)
-and all the people involved that I might not directly know but that made all this possible...THANK YOU

THE END

Reserved Slides

Photoemission differences:

	Metal	Semiconductor
	Mg, Copper	GaAs,Cs2Te (cesiumtelluride)
Conversion photon→"e"	High optical reflectivity →Low efficiency	High efficiency for photon with energy > gap energy E _G (to obtain a free electron)
Motion through solid	"e"-"e" scattering →low efficiency	Loss for phonon scattering are low →High efficiency
Surface barrier	Determined by "work function" → >2eV	Determined by "e-affinity"
	Low efficiency	High efficiency
Summary	Fast time response, Resistant to contamination	Slower time response, sensitivity to contamination, Response to visible and IR laser

Principle of operation:

An electro optical modulator produce 140ns macro pulse every 140ns. A fiber based interferometer splits the beam and recombine it so that every 140 ns the gap between 2 successive beam is reduced by T/2 (being T the micro pulse period)

Synchronization:

Lecroy SDA (16GHz, 60GS/s+ NewFocus Photodetector25GHz)

POCKELS CELL (PC)

Temporal Profile after Gating system

Macro pulse window selection by Pockels Cell

Leading edge from Pockels Cell

Analysis of beamlets from the slit mask

CLIC 3 TeV parameters

Center-of-mass energy	3 TeV	
Peak Luminosity	5.9·10 ³⁴ cm ⁻² s ⁻¹	
Peak luminosity (in 1% of energy)	2·10 ³⁴ cm ⁻² s ⁻¹	
Repetition rate	50 Hz	
Loaded accelerating gradient	100 MV/m	
Main linac RF frequency	12 GHz	
Overall two-linac length	41.7 km	
Bunch charge	3.72·10 ⁹	
Bunch separation	0.5 ns	
Beam pulse duration	156 ns	
Beam power/beam	14 MW	
Hor./vert. normalized emittance	660 / 20 nm rad	
Hor./vert. IP beam size bef. pinch	40 / 1 nm	
Total site length	48 km	
Total power consumption	389 MW	

Comparison CLIC CTF3

CTF3 is scaled down from CLIC and uses existing infrastructure: <u>Main goals:</u>

- \rightarrow Demonstrate CLIC drive beam generation
- \rightarrow Demonstrate 12 GHz rf structure with two beam acceleration
- \rightarrow Demonstrate stable and efficient deceleration with test beam line

	CLIC	CTF3
Drive Beam energy	2.4 GeV	150 MeV
compression / frequency multiplication	24 (Delay Loop + 2 Combiner Rings)	8 (Delay Loop + 1 Combiner Ring)
Drive Beam current	4.2 A*24 → 101 A	3.5 A*8 → 28 A
RF Frequency	1 GHz	3 GHz
train length in linac	139 μs	1.5 μs
energy extraction	90 %	~ 50 %

CTF3 collaboration

