# Elliptic flow of $J/\psi$ in U+U collisions performed at STAR experiment

Alena Harlenderová

FNSPE CTU in Prague

5.10.2016

Alena Harlenderová (FNSPE CTU in Prague)Elliptic flow of  $J/\psi$  in U+U collisions perforr

5.10.2016 1 / 18

- Quark-gluon plasma
- 2 STAR detector
- 3 Non-central collisons
- 4 Elliptic flow



## Quark-gluon plasma

#### Nuclear matter

- quarks bounded in hadrons
- Quark-gluon plasma
  - QCD predicts also another stage of matter
  - QGP quark gluon plasma
  - quarks not bounded in hadrons
  - present at the beginning of universe



#### STAR detector



Alena Harlenderová (FNSPE CTU in Prague)Elliptic flow of  $J/\psi$  in U+U collisions perform

5.10.2016 4 / 18

## Azimutal distribution of particle momentum

 azimutal anisotrophy in spatial distribution of matter in non-central collisions



arXiv:1102.3010

- medium thermalized briefly after the collision, expands anisotrophically
- preassure gradient different magnitude at different places of the transverse plane
- azimutal distribution of particle momentum sensitive to early stages of the collision

$$\frac{{}^{3}N}{{}^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{i=1}^{\infty} 2v_{n}\cos(n(\phi - \Phi_{n}^{RP}))\right)$$

## STAR results on $v_2 J/\psi$ in Au+Au collisions



- the first results on  $\textit{v}_2~J/\psi$  at STAR experiment
- v<sub>2</sub> J/ψ in Au+Au collisions
- $J/\psi$  colorless meson
- $J/\psi$  has low  $v_2$  in comparison to charged hadron and  $\phi$  meson
- J/ψ with higher p<sub>T</sub> probably are not produced predominantly by coalescence

arXiv:1212.3304

#### Used data

- U+U collisions at  $\sqrt{s_{NN}} = 192.8 \text{GeV}$
- high energy density
- non-spherical shape



### Event plane

- distribution of angle of event plane Q-vector should be uniform
- TPC efficiency is not azimuthally uniform

• 
$$Q_{x,2} = \sum_i w_i \cos(2\phi_i) = Q_2 \cos(2\Phi_2),$$
  
 $Q_{y,2} = \sum_i w_i \sin(2\phi_i) = Q_2 \sin(2\Phi_2)$ 



- minimum bias,
- $|v_z| < 30 {
  m cm}$ ,
- |charge| = 1,
- 15 < nHitsFit,
- 0.52 < *nHitsRatio*,
- global DCA < 2cm,

• 
$$0.15 < p_T < 2 \text{GeV}$$

• 
$$|\eta| < 1.$$

#### Recenered event plane

• average  $\bar{Q}$ -vector of one particle in one day for certain centrality subtracted from Q-vector of every particle

$$egin{aligned} Q_{\mathrm{x},2} &= \sum_{i=1}^{N_{ev}} (w_i \cos(2\phi_i) - ar{Q}_{\mathrm{x},2,d,c}), \ Q_{\mathrm{y},2} &= \sum_{i=1}^{N_{ev}} (w_i \sin(2\phi_i) - ar{Q}_{\mathrm{y},2,d,c}), \end{aligned}$$



## Shifting method

- eventplane distribution after recentereng not comletely flat
- other correction: shifting

• 
$$2\Phi_2^{shift} \equiv 2\Phi_2 + 2\Delta\Phi_2^{rec}$$

• 
$$2\Delta\Phi_2 \equiv \sum_{k=1} [A_k \cos kn\Phi_2^{rec} + B_k \sin kn\Phi_2^{rec}]$$

- $A_k = -\frac{2}{k} \langle \sin kn \Phi_2^{rec}, \rangle B_k = \frac{2}{k} \langle \cos kn \Phi_2^{rec} \rangle$
- coefficients collisions minimumbias and central triggers

Zoomed eventplane after recentering Zoomed eventplane after shifting



5.10.2016

10 / 18

Alena Harlenderová (FNSPE CTU in Prague)Elliptic flow of  $J/\psi$  in U+U collisions perforr

#### Event plane resolution

- not infinite multiplicity
- limited estimation of reaction plane angle
- event plane resolution:  $R_2 = \langle \cos(2(\Phi_2 \Phi_{RP})) \rangle$
- not known  $\Phi_{RP}$
- estimation  $R_2$  using random subevents



Used triggers

- minimum bias, NPE, central
- Cuts for  $J/\psi$  identification
  - momentum cuts:  $p_1 > 1.4 {
    m GeVc}^{-1}$ ,  $p_2 > 1.2 {
    m GeVc}^{-1}$ 
    - $|1/\beta 1| < 0.03$

- 1.5 GeVc $^{-1} < p$
- 0.3 < pc/E < 1.5
- $-0.6 < n\sigma_e < 3$ 
  - or

•  $-0.3 < n\sigma_e < 3$ 

or

- $-1 < n\sigma_e < 3$
- 0.3 < pc/E < 1.5
- $|1/\beta 1| < 0.03$

## Event plane method - $J/\psi$ signal

- all centralities
- definite p<sub>T</sub> bin
- fit like-sign background invariant mass distribution with 2nd order polynomial
- fit unlike-sign invariant mass distribution with 2nd order polynomial (defined by background fit) + gaussian



#### Event plane method

- fix mean and sigma of the gaussian (from previous fit)
- devide signal (background) into 10 bins according to  $\phi_i \Phi_2$
- combine 2 bins symmetricaly to  $\pi/2$  resulting 5 bins
- weight invatiant mass distribution with inverse of event plane resolution for each centrality bin
- fit invariant mass distribution for each  $\phi \Phi_2$  bin





#### Event plane method

- extract yiels with help of fits of signal and background
- fit yields by function  $N \cdot (1 + v_{2,obs} \cdot \cos(2 \cdot (\phi \Phi_2)))$



#### Event plane method

$$p_T$$
 2 – 4GeVc $^{-1}$ , cent 0-80%



$$p_T 4 - 6 \text{GeVc}^{-1}$$
, cent 0-80%



 $p_T \, 5 - 10 {
m GeVc^{-1}}$ , cent 0-80 %



- azimuthal distribution of particle momentum sensitive to early stage of collision
- elliptic flow
- $J/\psi$  colorless meson
- Au+Au  $v_2$  consistent with zero (with exception of first  $p_T$  bin)
- $U+U v_2$  calculated by event plane method consistent with zero

### Thank you for attention