Kaon femtoscopy at the STAR experiment

Jindřich Lidrych for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Heavy Ion Physics Institute of Physics of AS CR, Prague, CZE

5th – 6th October 2016

Femtoscopy

Femtoscopy with kaons – a cleaner probe

STAR Experiment at RHIC

 $5^{th} - 6^{th}$ October 2016

Charged kaon femtoscopy for BES

Femtoscony	HIC Beam Energy Scan	√s _{NN} (GeV)	μ_B (MeV)	#Events	#Weeks	Year	
Геппозсору	One of the main physics program at the RHIC	200	20	350 M	11	2010	
Kaon femtoscopy		62.4	70	67 M	1.5	2010	
	 The goal of Beam Energy Scan: Find the QCD critical point 1st order phase transition signs Turn-off sQGP signatures 	39.0	115	130 M	2	2010	
STAR Experiment		27.0	155	70 M	1	2011	
		19.6	205	36 M	1.5	2011	
for BES		14.5	260	20 M	3	2014	
		11.5	315	12 M	2	2010	
Results from BES	D famtacappia analysis of abarrand kaona	7.7	420	4 M	4	2010	
at top RHIC energy	Motivation: Is there a different between K^+ and K^- source?			Martin Girard from WUT			
•	• 6 energies: 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV				ality 0-30%]		
Results from 200 GeV	2 centrality bins (0-30% and 30-80%)	1.6 STAR Preliminary					
K+K- femtoscopy	2 k_T bins (0.2-0.4 GeV/ <i>c</i> and 0.4-0.6 GeV/ <i>c</i>)	1	.5	K ⁺ -K ⁺	K-K	5 + 0.05	
•	Fitting function: Phys. Lett., B270:69–74, 1991	1	.3	0.42 ± 0.02	$\begin{array}{c c} 01 \\ \lambda \\ \end{array} 0.4 \end{array}$	0 ± 0.01	
Model comparison	$CF(q_{inv}) = \left[(1 - \lambda) + \lambda K(q_{inv}, R_{inv})(1 + e^{-R_{inv}^2}) \right]$.2					
Conclusions where R_{inv} – source radii, λ – correlation strength, $K(q_{inv}, R_{inv})$ – Coulomb function and \mathcal{N} – normalization			0.9				
			0.8000.1	0.2 0.3	0.4).5 q _{inv} [GeV/c	
5 th – 6 th October 2016	Jindřich Lidrych						

0.6 q_{inv} [GeV/c]

Results from kaon femtoscopy for BES

Centrality 0-30%

30

Centrality 0-30%

40

 $0.4 < k_T < 0.6 \text{ GeV}/c$

 $+K^+-K^+$

-→K⁻-K⁻

50

60

√s_{NN} [GeV]

Femtoscopy

No clear beam energy dependence visible

3.5

3.0

2.5

2.0

1.5

4.5

4.0

3.5

3.0 2.5

2.0

10

20

20

30

- Kaon femtoscopy
- Possible different behavior for K^+ and K^- for energy 10-20 GeV ?

STAR Preliminary

60

√s_{NN} [GeV]

 $0.2 < k_T < 0.4 \text{ GeV}/c$

 $+K^+-K^+$

-→K⁻-K⁻

50

STAR Preliminary

[Lu] ^{Iu} 4.0

3.5

3.0

2.5

2.0

[**uj**] ^{4.0}

3.5F

3.0

2.5

10

20

20

10

30

40

30

Centrality 30-80%

Centrality 30-80%

STAR Preliminary

60

√s_{NN} [GeV]

▲ K⁺-K⁺

-▼K⁻-K

50

STAR Preliminary

 $0.2 < k_T < 0.4 \text{ GeV}/c$

40

 $0.4 < k_T < 0.6 \text{ GeV}/c$

▲ K⁺-K⁺

≁K⁻-K

50

60

√s_{NN} [GeV]

Jindřich Lidrych

40

Kaon femtoscopy at top RHIC energy

Femtoscopy

Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$

Kaon femtoscopy

STAR Experiment

Kaon femtoscopy for BES

Results from BES

Kaon femtoscopy at top RHIC energy

Results from 200 GeV

K⁺K⁻ femtoscopy

Model comparison

Conclusions

In the past, STAR has already performed the first measurements with kaons

Phys. Rev. C88 (2013) 34906

٠

- Used data were recorded in 2004 and 2007
- Only TPC for PID
- Data favor models that break the m_T –scaling

Kaon femtoscopy at top RHIC energy

Femtoscopy

Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$

Kaon femtoscopy

STAR Experiment

Kaon femtoscopy for BES

Results from BES

Kaon femtoscopy at top RHIC energy

Results from 200 GeV

٠

K⁺K⁻ femtoscopy

Model comparison

Conclusions

In the past, STAR has already performed the first measurements with kaons *Phys. Rev. C88 (2013) 34906*

- Used data were recorded in 2004 and 2007
- Only TPC for PID
- Data favor models that break the m_T –scaling
- Source imaging was also performed
 - Technique to obtain kaon source function S(r, k) directly
- -> Kaon source can be well described by Gaussian shape

Kaon femtoscopy at top RHIC energy

Femtoscopy

Kaon femtoscopy

Now, higher statistics which allow more precise measurements

- Data were recorded by the STAR in 2011
- **STAR Experiment**
- Kaon femtoscopy for BES

Results from BES

Kaon femtoscopy at top RHIC energy

Results from 200 GeV

K⁺K⁻ femtoscopy

Model comparison

Conclusions

- One of the largest available statistics ٠
- Time of Flight detector improves PID and extends identification to higher ۲ momenta

1D & 3D femtoscopic analysis of charged kaons

- 1D: 5 centrality bins: 0-5%, 5-10%, 10-30%, 30-50% and 50-75%
- 3D: 4 centrality bins: 0-10%, 10-30%, 30-50% and 50-75% •
 - 4 k_T bins: (0.05-0.35)GeV/c, (0.35-0.65) GeV/c, (0.65-0.95) GeV/c and (0.95-1.25) GeV/c

Fitting – extraction of source size

5th – 6th October 2016

Results – extracted source size

- k_T and centrality dependence of HBT radii is observed
 - Source radii increase with the centrality and decrease with pair transverse momentum

Conclusions

Model comparison

1D & 3D: Uncertainty is dominated by systematic error, which is obtained by varying the fit range

 $5^{th} - 6^{th}$ October 2016

Results – KK radii & Blast-wave model

Femtoscopy with unlike-sign kaons

Femtoscopy

Kaon femtoscopy

STAR Experiment

Kaon femtoscopy

for BES

Results from BES

Kaon femtoscopy

at top RHIC energy

Results from 200 GeV

K⁺K⁻ femtoscopy

Model comparison

Conclusions

Higher statistics also allow new possibilities:

Femtoscopy with narrow resonance

- Using strong final-state interaction via the resonance decay
 - Predicted to be sensitive to source spatial extent than measurement at low q_{inv}
 - Statistically advantageous
- Challenge extension of femtoscopic formalism to higher q_{inv}

K^+K^- correlations:

- Coulomb and strong final state interaction
- $\phi(1020)$ resonance
 - $k^*=126\,{
 m MeV}/c$, $arGamma=4.3\,{
 m MeV}$
- First systematic study

Raw unlike-sign kaon correlation functions

Comparison of 1D unlike-sign to theoretical model

Gauss + Lednický model of final-state interaction

Includes $\phi(1020)$ resonance due to the FSI

extracted from the like-sign correlation function fit

 $CF(p_1, p_2) = \int d^3r S(r, k) |\psi_{1,2}(r, k)|^2$

 $CF^{exp} = (CF^{theo} - 1)\lambda + 1$

which is corrected for impurities

Femtoscopy

Kaon femtoscopy

STAR Experiment

Kaon femtoscopy for BES

Results from BES

Kaon femtoscopy at top RHIC energy

Results from 200 GeV

K⁺K⁻ femtoscopy

Model comparison

Conclusions

Extracted radii from like-sign kaon femtoscopy are used for theoretical calculation of unlikesign correlation function Experimental data

Lednicky: Phys.Part.Nucl. 40 (2009) 307-352

for theoretical calculation

in order to compare to an experimental correlation function,

Gaussian parameterization of source size – source size R_{inv} is

The theoretical function is transformed to the experimental one via:

Comparison of 1D unlike-sign to Lednický model

 $5^{th} - 6^{th}$ October 2016

Comparison of 1D unlike-sign to Lednický model

5th – 6th October 2016

Conclusions

Femtoscopy

Kaon femtoscopy

Charged kaon femtoscopy for RHIC Beam Energy Scan

- Extraction of source radii R_{inv} from 1D correlation function
- Possibly different emitting source radii for K^+ and K^- for energy below 20 GeV

STAR Experiment

Kaon femtoscopy for BES

Results from BES

Kaon femtoscopy at top RHIC energy

Results from 200 GeV

K⁺K⁻ femtoscopy

Model comparison

Conclusions

Measurement of $K^+K^+ \otimes K^-K^-$ correlations in Au+Au collisions at 200 GeV

- Extraction of source radii R_{out} , R_{side} and R_{long} from 3D CF
- Performed kaon source imaging
 - Study kaon source function in Au+Au collisions at 200 GeV
 - Source can be well described by Gaussian shape
 - Source radii used for Blast-wave model to extract freeze-out configuration
 - Results show difference between pion and kaon parameters

Measurement of K^+K^- correlations in Au+Au collisions at 200 GeV

- Strong centrality dependence in $\phi(1020)$ region
- k_T dependence in $\phi(1020)$ region
- Comparison of unlike-sign CF to Lednický model
 - Comparison indicates a breakdown of femtoscopic formalism in region of resonance in peripheral collisions

Thank you for your attention

