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Motivation for PID in jets

» Baryon-to-meson ratio is enhanced in Pb—Pb and p—Pb collisions.
» This phenomenon cannot be explained by fragmentation in vacuum.
> What is the effect of QGP on hadronization mechanism(s) in jets?

» What are the mechanisms (parton recombination)?
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Motivation for PID in jets

We aim to understand the origin(s) of the /\/Kg enhancement by separating

hadrons produced in hard processes (jets) from hadrons produced in soft processes
(underlying event).

leading particle

Is the baryon-to-meson ratio enhanced
due to the collective effects in the plasma
(parton recombination, radial flow,. . .)
or is it (also) due to a modification of
the jet fragmentation in the medium?

> jet fragmentation
A high-pt parton from hard
scattering fragments into hadrons.

» parton recombination

Multiple partons cluster together to
form a hadron.




ALICE

» collisions studied: p—p at /s = 7 TeV, p—Pb at \/syy = 5.02 TeV, Pb—Pb at
VSNN = 2.76 TeV

» tracking of charged particles by ITS & TPC in magnetic field of 0.5 T

> centrality estimated from the multiplicity of charged particles in the detectors
at forward pseudorapidities
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Analysis of charged jets

» track selection

> charged primary particles
> pirck > 150 MeV/c
> uniform in ¢ X 7, |Nerack| < 0.9

> raw-jet reconstruction
> anti-k; algorithm
> resolution parameter R = 0.2, (0.3,0.4)

v

subtraction of average soft background
> average background density p estimated from the median k; cluster

jet,ch,corr jet,ch,raw [P
> pr =pr — pAiet.ch, (where Ajetch is jet area)

> signal-jet selection (good candidates for hard scattering)
> prleadine track > 5GeV/c (only Pb—Pb)
> Ajet.ch > 0.6nR?

jet.ch .
further pr<" corrections

> background anisotropy (intra-event pr fluctuations)
> detector response

v



Analysis of neutral strange particles

Strange neutral particles decaying into
two charged daughter particles

» meson K — m* +m~ (BR 69 %)
> baryon A — p+ 1~ (BR 64 %)

“DCA between

05<p <105 GeV/c
Pb-Pb at |s\, = 2.76 TeV

cuts on decay parameters.
Signal yield extracted from the
invariant-mass distribution.

Mother VO particle reconstructed using /,6'2’@*4 daughters
topology of its V-shaped decay. & ., _
. 5
/" DCA of daughter ®
" to primary vertex
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Strange particles in jets

Analysis steps

>

>

vV v. v Yy

VO candidate selection

candidate—jet matching (V% in jet cones)

\/(¢v° - ¢jet,ch)2 + (vo — 77jet,ch)2 <R,

[jet,ch| ™ < [myo| ™ = R
candidate-UE matching (V% in events without
selected jets with pi"" > 5 GeV/c)
signal extraction (invariant-mass distribution)
efficiency correction (in jet cones, in UE)
subtraction of V% in UE

subtraction of V% coming from decays of jet
constituents (= — A), i.e. “feed-down” correction

jet cone

charged
primary
particles

jet axis



A/KQ ratio in charged jets in p—p at /s = 7 TeV

(127 x 10% minimum-bias collisions)
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» The ratio in UE is consistent with the inclusive ratio.

» The ratio in Jets is clearly different from the inclusive ratio at low and
intermediate pT .

> A slight increase of the ratio in jets with increasing R.
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A/KQ ratio in charged jets in p—Pb at \/syy = 5.02 TeV
(high-multiplicity collisions, 0-10 %)
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The ratio in jets
> is clearly different from the inclusive ratio at low and intermediate p\T’O,
> is different from the inclusive ratio in PYTHIA (black line),
> is similar to the ratios in PYTHIA jets (red dashed lines),

» shows no significant dependence on pjTEt‘Ch and a slight dependence on R.
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A/KQ ratio in charged jets in Pb—Pb at /syy = 2.76 TeV
(7.4 x 10° central collisions, 0-10 %)
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The ratio in jets
» is clearly different from the inclusive ratio at low and intermediate p\T/O,

> shows no significant dependence on pjft’Ch,

> is consistent with the ratio in jets in p—Pb and p—p at p\T/D > 4GeV/c.



K2, A spectra in charged jets in Pb—Pb

comparison to PYTHIA smeared with p’ft‘h fluctuations
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» Same slopes of spectra from measurement and from PYTHIA.

» Enhancement for A at

p¥0

<4GeV/c.
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Summary and outlook

ALICE has performed the first measurement of the /\/Kg ratio in charged jets in
p—p, p—Pb and Pb—Pb collisions at the LHC.

Message

> In every collision system, the /\/Kg ratio in jets is significantly smaller than
the inclusive ratio (and the UE).

» The A/KY ratios in jets are consistent within uncertainties in all collision
systems for p\T/0 > 4GeV/c.

» The dominant source of the enhancement are soft processes associated with
collective behaviour.

> A potential modification of jet fragmentation seems to be restricted to the

region V’ < 4GeV/c and manifest by an enhancement of the A yields.
py

Outlook
» Multiplicity dependence in p—p and p—Pb collisions.

» Better resolution in Pb—Pb collisions in Run 2.



Thank you for your attention.
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Comparison of data with models
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V° candidate

selection

[ Cut variable Value
Daughter tracks
TPC refit true
type of production vertex not kKink
DCA to the primary vertex > 0.1cm
DCA between daughters < lotpc
] <08
VU candidate
reconstruction method offline
cosine of the pointing angle (CPA) > 0.998
radius of the decay vertex 5-100cm
In| <07
transverse proper lifetime <57

Armenteros—Podolanski cut (K2)

pTArm. g 0'2|aArm.




Jet algorithms

A sequential recombination jet finder is defined according to this general scheme:
1. Vi,j: calculate distances dj; and dig (NB k = pr):
A2
dj = min (ktzlﬁ k2P) R'217 A?j (yi yJ) + (o ¢J) , dp= kffl?

2. Find dyin:
dmin = min (djj, dig) .

> If 3i,j : dmin = djj, merge particles i and j into a single particle and combine
their momenta.

» If 3/ : dmin = dig, declare particle i to be a final jet and remove it from the list.

These steps are repeated until no particles are left.

5150 JE— L — 5160 Ciial
e 1

1 Kk (background estimation)
p= 0 Cambridge/Aachen
—1 anti-k; (signal jets)

Matteo Cacciari et al. JHEP 0804 (2008) 063



Estimation of Vs in the underlying event in Pb—Pb

>

vV vyyy

no-jet events: Vs in events with no selected jets

outside cones: Vs outside jet cones

random cones: Vs in a randomly oriented cone
median-cluster cones: V% in the cone of the median kq-cluster
perpendicular cones: V% in cones perpendicular to the jet in azimuth

Methods differ in regions, events, statistics, efficiency.
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Reconstruction efficiency, feed-down in Pb—Pb

Reconstruction efficiency depends
strongly on p¥0 and .

Shape of the measured 70 distribution
depends on the selection criteria.
Efficiency of inclusive Vs is reweighted

Feed-down fraction of A in jets
estimated from:

>

inclusive A (Pb—Pb-like),

> jets generated by PYTHIA 8

. S (p—p-like).
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§ 0.5: I o .5 0.37
E inclusive, <0. ° C
8 045 ALICE Pb-Pb 0-10 % il g T ++ Estimates of the feed-down fraction of A in jets
5 = Preliminary Sy = 2.76 TeV +KZ éo.zsj
s E N g r o+ 2 LA™ ALICE
é 0351~ E 02l & In,l <07 Preliminary
g . O £ :
S 03F oTon, F
° E _mm e F 1 —_—
0.25F o . — .15 + == —
) — ‘:ilf = t ==
E 3 ] 4t
015 & 0.1 —e— Pb-Pb, /sy, =2.76 TeV, 0-10 %, inclusive
e $ I
o & r PYTHIA 8 (Tune 4G), pp, s = 2.76 TeV
E & 005 —e— injets, R=0.2, ;#:"“" >10 GeV/c
005 o F —e—injets, R =0.3, ;ﬂ:““ >10 GeV/c
o L b e e ol v v 1 e b Ly
0 2 4 6 8 10 1 0 2 4 1

p¢ (GeV/c)

6/9



Reweighting of the reconstruction efficiency

» ¢ — reconstruction efficiency of inclusive particles
€s — reconstruction efficiency of particles of interest (scaled €)
as — vyield of associated particles of interest
gs — yield of generated particles of interest
m — uncorrected yield of measured particles (candidates) of interest
t — yield of true (corrected) particles of interest
» P — signal purity
Signal extraction in JC, UE (assume that Pindusive(p\T/o,nVo) is the same as for V'
of interest):

vVVvyVvyyvyy

0 0 0
m(p'\l'/ anVO) = mraw(p'\l'/ 77]V°)|peak region * Pinclusive(p'\r/ 77]V°)|peak region
Efficiency calculation:
as=m, o, =0, gs = as/e
VO
1 vaofgs(nvoi’pT ) _ as(nvo,-,P\T/o) 1
Voy VoY T Z \/0 \/O
es(pr) vaoj as(UVOJ-,PT ) o, vaoj 35(77V°jaPT ) (o P )

Spectra correction:

t=m/es



Sources of systematic uncertainties

vV V.V vV VY

v

cuts for the selection of V° candidates (cuts varied)

signal extraction (parameters varied)

estimation of spectra of Vs in the underlying event (multiple methods)
estimation of material budget (from another analysis)

estimation of feed-down fraction of A and A in jets (PYTHIA as alternative)
correction of pJTEt (embedding of simulated jets in real data)

0 :
detector performance (pY resolution)



Systematic uncertainties in p—Pb

source uncertainty

selection cuts 2-5 % for K¢, 3-6 % for A

signal extraction | 6 % (10 %) for p"" > 10 GeV/c (20 GeV/c)
V' in UE 10 % (2 %) at low (high) pY’

PN scale 1% (10 %) at low (high) pY’

feed-down 5%
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