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Motivation for PID in jets
I Baryon-to-meson ratio is enhanced in Pb–Pb and p–Pb collisions.
I This phenomenon cannot be explained by fragmentation in vacuum.
I What is the effect of QGP on hadronization mechanism(s) in jets?
I What are the mechanisms (parton recombination)?
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Motivation for PID in jets
We aim to understand the origin(s) of the Λ/K0

S enhancement by separating
hadrons produced in hard processes (jets) from hadrons produced in soft processes
(underlying event).

Is the baryon-to-meson ratio enhanced
due to the collective effects in the plasma
(parton recombination, radial flow,. . . )
or is it (also) due to a modification of
the jet fragmentation in the medium?

I jet fragmentation
A high-pT parton from hard
scattering fragments into hadrons.

I parton recombination
Multiple partons cluster together to
form a hadron.
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ALICE
I collisions studied: p–p at

√
s = 7TeV, p–Pb at √sNN = 5.02TeV, Pb–Pb at√sNN = 2.76TeV

I tracking of charged particles by ITS & TPC in magnetic field of 0.5T
I centrality estimated from the multiplicity of charged particles in the detectors

at forward pseudorapidities
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Analysis of charged jets

I track selection
I charged primary particles
I ptrack

T > 150MeV/c
I uniform in φ× η, |ηtrack| < 0.9

I raw-jet reconstruction
I anti-kt algorithm
I resolution parameter R = 0.2, (0.3, 0.4)

I subtraction of average soft background
I average background density ρ estimated from the median kt cluster
I pjet,ch,corr

T = pjet,ch,raw
T − ρAjet,ch, (where Ajet,ch is jet area)

I signal-jet selection (good candidates for hard scattering)
I pT

leading track > 5GeV/c (only Pb–Pb)
I Ajet,ch > 0.6πR2

I further pjet,ch
T corrections

I background anisotropy (intra-event pT fluctuations)
I detector response
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Analysis of neutral strange particles

Strange neutral particles decaying into
two charged daughter particles

I meson K0
S → π+ + π− (BR 69%)

I baryon Λ→ p+ π− (BR 64%)
Mother V0 particle reconstructed using
topology of its V-shaped decay.
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Strange particles in jets

Analysis steps
I V0 candidate selection
I candidate–jet matching (V0s in jet cones)√

(φV0 − φjet,ch)2 + (ηV0 − ηjet,ch)2 < R,

|ηjet,ch|max < |ηV0 |max − R
I candidate–UE matching (V0s in events without

selected jets with pjet,ch
T > 5GeV/c)

I signal extraction (invariant-mass distribution)
I efficiency correction (in jet cones, in UE)
I subtraction of V0s in UE
I subtraction of V0s coming from decays of jet

constituents (Ξ→ Λ), i.e. “feed-down” correction

jet axis

charged

primary

particles

V0

jet cone

R

7 / 13



Λ/K0
S ratio in charged jets in p–p at

√
s = 7TeV

(127× 106 minimum-bias collisions)
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I The ratio in UE is consistent with the inclusive ratio.
I The ratio in jets is clearly different from the inclusive ratio at low and

intermediate pV0

T .
I A slight increase of the ratio in jets with increasing R.
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Λ/K0
S ratio in charged jets in p–Pb at √sNN = 5.02TeV

(high-multiplicity collisions, 0–10%)
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The ratio in jets
I is clearly different from the inclusive ratio at low and intermediate pV0

T ,
I is different from the inclusive ratio in PYTHIA (black line),
I is similar to the ratios in PYTHIA jets (red dashed lines),
I shows no significant dependence on pjet,ch

T and a slight dependence on R.
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Λ/K0
S ratio in charged jets in Pb–Pb at √sNN = 2.76TeV

(7.4× 106 central collisions, 0–10%)
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The ratio in jets
I is clearly different from the inclusive ratio at low and intermediate pV0

T ,
I shows no significant dependence on pjet,ch

T ,
I is consistent with the ratio in jets in p–Pb and p–p at pV0

T > 4GeV/c.
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K0
S, Λ spectra in charged jets in Pb–Pb

comparison to PYTHIA smeared with pjet,ch
T fluctuations

pjet,ch
T > 10GeV/c
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I Same slopes of spectra from measurement and from PYTHIA.
I Enhancement for Λ at pV0

T < 4GeV/c.
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Summary and outlook
ALICE has performed the first measurement of the Λ/K0

S ratio in charged jets in
p–p, p–Pb and Pb–Pb collisions at the LHC.

Message
I In every collision system, the Λ/K0

S ratio in jets is significantly smaller than
the inclusive ratio (and the UE).

I The Λ/K0
S ratios in jets are consistent within uncertainties in all collision

systems for pV0

T > 4GeV/c.
I The dominant source of the enhancement are soft processes associated with

collective behaviour.
I A potential modification of jet fragmentation seems to be restricted to the

region pV0

T < 4GeV/c and manifest by an enhancement of the Λ yields.

Outlook
I Multiplicity dependence in p–p and p–Pb collisions.
I Better resolution in Pb–Pb collisions in Run 2.

12 / 13



Thank you for your attention.
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Comparison of data with models
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V0 candidate selection

Cut variable Value
Daughter tracks
TPC refit true
type of production vertex not kKink
DCA to the primary vertex ≥ 0.1 cm
DCA between daughters ≤ 1σTPC
|η| ≤ 0.8
V0 candidate
reconstruction method offline
cosine of the pointing angle (CPA) ≥ 0.998
radius of the decay vertex 5–100 cm
|η| ≤ 0.7
transverse proper lifetime ≤ 5τ
Armenteros–Podolanski cut (K0

S) pT
Arm. ≥ 0.2|αArm.|
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Jet algorithms
A sequential recombination jet finder is defined according to this general scheme:
1. ∀ i , j : calculate distances dij and diB (NB kt ≡ pT):

dij = min
(

k2p
t,i , k

2p
t,j

)
Δ

2
ij

R2 , Δ
2
ij = (yi − yj)

2 + (φi − φj)
2
, diB = k2p

t,i

2. Find dmin:
dmin = min (dij , diB) .

I If ∃ i , j : dmin = dij , merge particles i and j into a single particle and combine
their momenta.

I If ∃ i : dmin = diB, declare particle i to be a final jet and remove it from the list.

These steps are repeated until no particles are left.

p =

 1 kt (background estimation)
0 Cambridge/Aachen
−1 anti-kt (signal jets)

Matteo Cacciari et al. JHEP 0804 (2008) 063
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Estimation of V0s in the underlying event in Pb–Pb
I no-jet events: V0s in events with no selected jets
I outside cones: V0s outside jet cones
I random cones: V0s in a randomly oriented cone
I median-cluster cones: V0s in the cone of the median kt-cluster
I perpendicular cones: V0s in cones perpendicular to the jet in azimuth

Methods differ in regions, events, statistics, efficiency.
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Reconstruction efficiency, feed-down in Pb–Pb
Reconstruction efficiency depends
strongly on pV0

T and ηV0 .
Shape of the measured ηV0 distribution
depends on the selection criteria.
Efficiency of inclusive V0s is reweighted
to get efficiency in jet cones and UE.
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Feed-down fraction of Λ in jets
estimated from:

I inclusive Λ (Pb–Pb-like),
I jets generated by PYTHIA 8

(p–p-like).
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Reweighting of the reconstruction efficiency
I ε — reconstruction efficiency of inclusive particles
I εs — reconstruction efficiency of particles of interest (scaled ε)
I as — yield of associated particles of interest
I gs — yield of generated particles of interest
I m — uncorrected yield of measured particles (candidates) of interest
I t — yield of true (corrected) particles of interest
I P — signal purity

Signal extraction in JC, UE (assume that Pinclusive(pV0

T , ηV0) is the same as for V0s
of interest):

m(pV0

T , ηV0) = mraw(pV0

T , ηV0)|peak region · Pinclusive(pV0

T , ηV0)|peak region

Efficiency calculation:

as ≡ m, σas ≡ 0, gs = as/ε

1
εs(pV0

T )
=

∑
ηV0 i

gs(ηV0 i , pV0

T )∑
ηV0 j

as(ηV0 j , pV0

T )
=
∑
ηV0 i

as(ηV0 i , pV0

T )∑
ηV0 j

as(ηV0 j , pV0

T )

1
ε(ηV0 i , pV0

T )

Spectra correction:
t = m/εs
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Sources of systematic uncertainties

I cuts for the selection of V0 candidates (cuts varied)
I signal extraction (parameters varied)
I estimation of spectra of V0s in the underlying event (multiple methods)
I estimation of material budget (from another analysis)
I estimation of feed-down fraction of Λ and Λ in jets (PYTHIA as alternative)
I correction of pjet

T (embedding of simulated jets in real data)
I detector performance (pV0

T resolution)
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Systematic uncertainties in p–Pb

source uncertainty
selection cuts 2–5 % for K0

S, 3–6 % for Λ
signal extraction 6 % (10 %) for pjet,ch

T > 10GeV/c (20GeV/c)
V0s in UE 10 % (2 %) at low (high) pV0

T
pjet,ch
T scale 1 % (10 %) at low (high) pV0

T
feed-down 5 %
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