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Content of the third lecture

• How to go beyond the BFKL approach
the ideas that led to the Color Glass Condensate picture

• The evolution of the CGC wave function
the JIMWLK equation and the Balitsky hierarchy

• A mean-field approximation: the BK equation
solutions: QCD traveling waves

the saturation scale and geometric scaling

• Example of phenomenological success
forward particle production in proton-nucleus collisions



Going beyond the BFKL 

approach



The problem with BFKL

this so-called infrared diffusion

invalidates the perturbative treatment

this leads to unitarity violations, for instance for the total cross-section,

the Froissart bound cannot be verified at high energies

• the growth of scattering amplitudes with energy

• the growth of gluon density with increasing rapidity

what did we do wrong ? use a perturbative treatment when we shouldn’t have

even if this initial condition is a fully perturbative

wave function (no gluons with small     )

the BFKL evolution populates

the non perturbative region



in this approach, hadronic scattering at high energies is described by the exchange of

quasi-particles called Reggeized gluons (or Reggeons)

summing terms isn’t enough, high-density effects are missing

to deal with this many body problem, one needs effective degrees of freedom

Proposals to go beyond BFKL

• the modified leading logarithmic approximation (MLLA)

Bartels, Ewertz, Lipatov, Vacca

the BFKL approximation corresponds to the exchange of two Reggeons

(a Pomeron), the idea of the MLLA is to include multiple exchanges

the BFKL growth is due to the approximation that

gluons in the wave function evolve independently

• the color glass condensate (CGC)

the CGC sums both and 

in this approach, the small-x part of the hadronic wave function is described by classical fields

when the gluon density is large enough, gluon recombination becomes important

the idea of the CGC is to take into account this effect via strong classical fields



The saturation phenomenon

gluon kinematics

recombination cross-section

gluon density per unit area

it grows with decreasing x

the saturation regime: for with  

recombinations important when

• gluon recombination in the hadronic wave function

for a given value of k², the saturation regime in a nuclear wave function

extends to a higher value of x compared to a hadronic wave function

is non-linear

• the saturation regime of QCD

is weakly coupled grows with decreasing x, and eventually 

the gluon density evolves with x in a non-linear way

in general, observables are non-linear functions of the gluon
density (and also depend on n-gluon correlations)

is easier to reach with nuclei



The Color Glass Condensate

McLerran and Venugopalan (1994)

• the CGC: an effective theory to describe the saturation regime

lifetime of the fluctuations

in the wave function ~

high-x partons ≡ static sources

low-x partons ≡ dynamical fields

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short-lived fluctuations

small x gluons 

as large classical fields
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valence partons

as static random 

color source
separation between

the long-lived high-x partons

and the short-lived low-x gluons

effective wave function

for the dressed hadron

the evolution of with x is a

renormalization group equationclassical Yang-Mills equations

this effective description of the hadronic wave function applies only to the small-x part
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which sums both



Basic features

in practice we deal with CGC averages such as

from , one can obtain the unintegrated gluon

distribution, as well as any n-parton distributions
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• from the CGC wave function to CGC averages
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we recover the BFKL equation in the low-density regime 

occupation numbers become large in the saturation regime

the growth of the saturation scale is about

when computing the unintegrated gluon distribution

the CGC is moving in the      direction and the gauge is

the current is

solving Yang-Mills equations gives

• from color charge to color field



Saturation and multiple scatterings

what I will discuss: how the wave function evolves with x

how do we “measure” it with well-understood probes

so far we only discussed the hadronic/nuclear wave function,

but during a collision that probes the saturation regime, multiple

scatterings occur when

• scattering off the CGC

parton saturation

(i.e. the fact that the gluon distribution in the wave function evolves in a non-linear way)

and multiple scatterings

(i.e. the fact that observables are non-linear functions of the gluon distribution)

are of equal importance

to be consistent, both should be included



The evolution of the

CGC wave function:

the B-JIMWLK equations



The JIMWLK equation
Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
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][x• a functional equation for the x evolution of :

with

the JIMWLK equation gives the evolution of the wave function for small enough x

the equivalent Balitsky equations are obtained by considering

the scattering of simple test projectiles (dipoles) off the CGC

the Wilson lines sum powers of

adjoint representation



Scattering off the CGC

their interaction should conserve their spin, polarisation, color, momentum …

in the high-energy limit, the eigenstates are simple when the partons

transverse momenta are Fourier transformed to transverse coordinates

x, y : transverse coordinates

in the large-Nc limit, further simplification: the eigenstates are only made of dipoles

),( yx

other quantum numbers aren’t explicitely written, the

eigenvalues depend only on the transverse coordinates
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• eigenstates ?

xyxy ST 1
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• eigenvalues

scattering amplitude off the (dense) target CGC

the interaction with the CGC conserves transverse position



Dipoles as test projectiles
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u : quark space transverse coordinate

v : antiquark space transverse coordinate

the      dipole:qq

JIMWLK equation → evolution equation for the dipole correlators

scattering of the quark:

• dipoles are ideal projectiles to probe small distances

dependence kept implicit in the following



The Balitsky hierarchy

an hierarchy of equation involving correlators with more and more dipoles

Balitsky (1996)
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• equations for dipoles scattering of the CGC

the BFKL kernel

BFKL saturation

general structure:

we will now derive the first equation of the hierarchy

solving the B-JIMWLK equations gives , …

which can then be used to compute observables
Y

TT zyxz
Y

Txy

• in the large Nc limit, the hierarchy is restricted to dipoles



• the valence component (using the mixed space):

Recall the dipole wave function
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x : quark space transverse coordinate

y : antiquark space transverse coordinate

other degrees of freedom are not explicitely written

qqd 

such that only perturbative 

sizes r << 1/ QCD are included
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from QCD at order gS

color

index

gqqqqd 

the dipole rapidity:

• the dipole dressed with one gluon



Elastic scattering of the dipole

)();())()(()();(ˆ yxxyyx qqWWTrqqS FF
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scattering of the quarkscattering of the antiquark

for the qqg component: 

let’s compute the elastic scattering amplitude Ael(Y ) in the

dipole-CGC collision where is the total rapidityY = YCGC + Yd

• the dipole scattering is described by Wilson lines
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Frame independence of Ael(Y )
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using the following identity to get rid of the adjoint Wilson line
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• in the frame in which andgqqqqd 

one obtains

our two expressions for Ael(Y )

should be identical, this

requirement in the limit

Y - YCGC  dY  0 gives

the first Balitsky equation

• frame independence:
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A mean field approximation: the 

Balitsky-Kovchegov equation



The BK equation
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let’s consider impact-parameter independent solutions

as gets close to 1 (the stable fixed point of 

the equation), the non-linear term becomes 

important, and ,       saturates at 1

with increasing Y, the unitarization scale get bigger

• obtain by neglecting correlations

• solutions: qualitative behavior

at small Y, is small, and the quadratic term can be neglected, the equation

reduces then to the linear BFKL equation and       rises exponentially with Y

r = dipole size



Coordinate vs momentum space

both equation are in the same universality class as the F-KPP equation

unintegrated gluon distributiondipole scattering amplitude



• let’s go to momentum space

coordinate space momentum space

due to conformal invariance, the linear part of the equation is the same for and

genuine saturation: no real saturation:

linear BFKL equation linear BFKL equation



The F-KPP equation
• same features as the BK equation

the precise forms of the space derivatives and of the non-linear term doesn’t matter

Fisher, Kolmogorov, Petrovsky, Piscounov

when expanding to second order,

the equations are the same (in momentum space)

in spite of small difference, same universality class

• dictionary F-KPP → BK

time derivative space derivative linear term meaning

exponential growth

non linear term 

meaning saturation

F-KPP and BK asympotic (in t or Y) solutions are the same: traveling waves

these equations belong to the same universality class



position:

Traveling wave solutions

the speed of the wave    is determined

only by the linear term of the equation

• what is a traveling wave

saturation

region

wave traveling at speed v,

independently of the initial condition

provided it is steep enough

there the initial condition

has not been erased yet

BK solutions: same rapidity evolution

quantitative features can be derived

• the formation of the traveling wave



Recall the BFKL solutions

initial condition 

in Mellin space
• the minimal speed

• a superposition of waves with speeds

is obtained for and its value is

this will be the speed of the

asymptotic traveling wave

• the saturation exponent

for the traveling wave to form, the initial condition

must feature



Y0

Y >Y0

QCD traveling waves
• the initial condition is steep enough Munier and Peschanski (2004)

• asymptotic solutions of BK

in QCD

same features for except

in the saturation region

• the saturation scale

 

with then

called geometric scaling



Numerical solutions

sub-asymptotic corrections (≡ geometric scaling violations) are also known:

• numerical simulations confirm the results

for the scattering amplitude for the saturation scale

Soyez



Running coupling corrections
• running coupling corrections to the BK equation

taken into account by the substitution

Kovchegov

Weigert

Balitsky

• consequences

similar to those first obtained by the simpler substitution

running coupling corrections slow down the increase of Qs with energy

also confirmed by numerical simulations, however

this asymptotic regime is reached for larger rapidities



Forward particle production

in pA collisions



Forward particle production

kT , y

y

T eksx 1

transverse momentum kT, rapidity y > 0

y

T eksx 2

• forward rapidities probe small values of x

values of x probed in the process:
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the large-x hadron should be described by

standard leading-twist parton distributions

the small-x hadron/nucleus should be

described by CGC-averaged correlators

the cross-section:
single gluon production

probes only the unintegrated

gluon distribution (2-point function)



Nuclear modification factor
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in the absence of nuclear effects, i.e. if the gluons

in the nucleus interact incoherently as in A protons

the suppressed production (RdA < 1) was predicted in the 

Color Glass Condensate picture, along with the rapidity dependence

Kopeliovich et al (2005), Frankfurt et al (2007)

note: alternative explanations (large-x energy loss effects) have been proposed

Albacete and CM (2010)



NLO-BK description of d+Au data

this fixes the two parameters of the theory:

- the value of x at which one starts to trust (and therefore use) the CGC description

- and the saturation scale at that value of x

Albacete and C.M. (2010)

the shapes and normalizations are well

reproduced, except the 0 normalization

the speed of the x evolution and of

the pT decrease are predicted



Conclusions
• fundamental consequence of QCD dynamics:

at asymptotically small x:

- QCD evolution becomes non-linear

- particle production becomes non-linear

- QCD stays weakly coupled
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• the energy dependence of the saturation scale, and more generally 
of observables, can be computed from first principles

although in practice, the predictivity will depend on the level of accuracy of the

calculation (LO vs NLO, amount of non-perturbative inputs needed, …) 

both in terms of practical applicability

and phenomenological success

• the Color Glass Condensate (CGC) 
has emerged as the best candidate
to approximate QCD in the saturation
regime


