Progress toward the phase diagram of QCD from the lattice

Philippe de Forcrand ETH Zürich \& CERN

2nd Int. Workshop, Tirana, Albania, Sept. 26, 2016

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ϕ^{4} : mass diverges with cutoff ?

r

QED: e diverges with cutoff? changes with gauge ?

\Longrightarrow Renormalization

The lattice is the only known gauge-invariant, non-perturbative regulator of QFT

1974: invented by Ken Wilson
1980: first Yang-Mills simulation by Mike Creutz

Basic properties of QCD

- QCD describes properties of quarks (cf. electrons - fermions) interacting by exchanging gluons (cf. photons - bosons)
- QCD is asymptotically free: weaker interaction at higher energy

The flip side of asymptotic freedom: "infrared slavery"

- Strong coupling at low energy \rightarrow non-perturbative
- Quarks are confined into color-neutral (color singlet) bound-states (hadrons):
qqq baryons: proton \& neutron (ordinary matter), ...

$q \bar{q}$ mesons: pion (lightest), kaon, rho, ...

Exotics: glueballs, tetraquarks $q q \bar{q} \bar{q}$, pentaquarks $q q q q \bar{q}$, etc...

In principle, all calculable by Lattice QCD simulations

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement
hadron masses
form factors, etc..

Example: hadron masses

BMW collaboration
arXiv:0906.3599 \rightarrow Science

PACS-CS collaboration
arXiv:0807.166|

Follow-up: neutron-proton mass diff.
arXiv:|406.4088 \rightarrow Science

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

*** Many-[composite]-body physics: nuclear matter phase diagram vs (temperature T, density $\leftrightarrow \mu_{B}$)

Motivation

What happens to matter when it is heated and/or compressed?

Water changes its state when heated or compressed

critical opalescence

The wonderland phase diagram of QCD from Wikipedia

Caveat: everything in red is a conjecture

Heavy-ion collisions

Knobs to turn:

- atomic number of ions
- collision energy \sqrt{s}

So far, no sign of QCD critical point (esp. RHIC beam energy scan)
"critical opalescence" ?

Finite μ : what is known?

Minimal, possible phase diagram

Monte Carlo? sign problem as soon as $\mu \neq 0$

The first Monte Carlo experiment (1777)

Probability of intersection: $\frac{2}{\pi}$

The extraordinary efficiency of Monte Carlo

Typical: $Z=\sum_{\text {states }} \exp [-S($ state $)] ;\langle W\rangle=\frac{1}{Z} \sum_{\text {states }} W$ (state $) \exp [-S($ state $)]$
Number of states $\sim \exp ($ volume $V)$

Monte Carlo: approximate Z by random subset of n states
Law of large numbers \rightarrow error $\sim n^{-1 / 2} \forall V$

How to sample $Z=\sum_{\text {states }} \exp [-S($ state $)]$?

- Random sampling: Pick states with uniform prob., give them weight $\exp (-S)$ Importance sampling: Pick states with prob. $\exp (-S) \stackrel{\text { give them uniform weight }}{\text { in }}$ Metropolis et al, 1953

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: importance sampling Prob(conf) $\propto \exp [-S($ conf) $]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem'

$$
\exists \text { conf s.t. "Boltzmann weight" } \exp [-S \text { (conf) }] \notin \mathbb{R}_{\geq 0}
$$

No probabilistic interpretation - Monte Carlo impossible??

- Examples:
- real-time quantum evolution:
weight in path integral $\propto \exp \left(-\frac{i}{\hbar} H t\right) \longrightarrow$ phase cancellations
- Hubbard model:
repulsion $U n_{\uparrow} n_{\downarrow} \quad$ Hubbard-Stratonovich $\operatorname{det}_{\uparrow} \operatorname{det}_{\downarrow}$
complex except at half-filling (additional symmetry)
- QCD at non-zero density / chemical potential:
integrate out the fermions $\operatorname{det}\left(D+\mu \gamma_{0}\right)^{2}\left(N_{f}=2\right)$ complex unless $\mu=0$ or pure imaginary (additional symmetry)

Lattice QCD: Euclidean path integral

space + imag. time $\rightarrow 4 d$ hypercubic grid:

$$
Z=\int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{E}[\{U, \bar{\psi}, \psi\}]}
$$

- Discretized action S_{E} :
- Ninn $\longrightarrow \bar{\psi}(x) U_{\mu}(x) \psi(x+\hat{\mu})+$ h.c.,

Dirac operator $\bar{\psi} \not \square \psi$

- $\quad \rightarrow \beta \operatorname{ReTr} U_{P}, U_{P}$ plaquette matrix \square Yang-Mills action

$$
a \rightarrow 0 \Leftrightarrow \beta=\frac{6}{g_{0}^{2}} \rightarrow \infty
$$

$$
\frac{1}{4} F_{\mu \nu} F_{\mu \nu}
$$

- Monte Carlo: with Grassmann variables $\psi(x) \psi(y)=-\psi(y) \psi(x)$?? Integrate out analytically (Gaussian) \rightarrow determinant non-local
$\operatorname{Prob}(\operatorname{config}\{U\}) \propto \operatorname{det}^{2} D(\{U\}) e^{+\beta \sum_{\rho} R e T r} U_{\rho}$ real non-negative when $\mu=0$

Sampling oscillatory integrands

- Example: $Z(\lambda)=\int d x \exp \left(-x^{2}+\mathbf{i} \lambda \mathbf{x}\right)=\int d x \exp \left(-x^{2}\right) \cos (\lambda x)$

- $Z(\lambda) / Z(0)=\exp \left(-\lambda^{2} / 4\right)$: exponential cancellations
\rightarrow truncating deep in the tail at $x \sim \lambda$ gives $\mathcal{O}(100 \%)$ error "Every x is important" \leftrightarrow How to sample?

Computational complexity of the sign pb

- How to study: $Z_{\rho} \equiv \int d x \rho(x), \quad \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$
\langle W\rangle \equiv \frac{\int d x W(x) \rho(x)}{\int d x \rho(x)}=\frac{\int d x[W(x) \operatorname{sign}(\rho(x))]|\rho(x)|}{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}=\frac{\langle W \operatorname{sign}(\rho)\rangle_{|\rho|}}{\langle\operatorname{sign}(\rho)\rangle_{|\rho|}}
$$

Computational complexity of the sign pb

- How to study: $Z_{\rho} \equiv \int d x \rho(x), \quad \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$
\langle W\rangle \equiv \frac{\int d x W(x) \rho(x)}{\int d x \rho(x)}=\frac{\int d x[W(x) \operatorname{sign}(\rho(x))]|\rho(x)|}{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}=\frac{\langle W \operatorname{sign}(\rho)\rangle_{|\rho|}}{\langle\operatorname{sign}(\rho)\rangle_{|\rho|}}
$$

- $\langle\operatorname{sign}(\rho)\rangle_{|\rho|}=\frac{\int d x \operatorname{sign}(\rho(x))|\rho(x)|}{\int d x|\rho(x)|}=\frac{Z_{\rho}}{Z_{|\rho|}}=\exp (-\frac{V}{T} \underbrace{\Delta f\left(\mu^{2}, T\right)})$, exponentially small diff. free energy dens.
Each meas. of $\operatorname{sign}(\rho)$ gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text { meas }}}$
Constant relative accuracy \Longrightarrow need statistics $\propto \exp \left(+2 \frac{\mathrm{~V}}{\bar{T}} \Delta f\right)$
Large V, low T inaccessible: signal/noise ratio degrades exponentially
"Figure of merit" Δf : measures severity of sign pb .

The CPU effort grows exponentially with L^{3} / T

CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of $10 \ldots$

Crudely based on: • 1 sec on 1 GF laptop for 2^{4} lattice, $a=0.1 \mathrm{fm}$

- effort $\propto \exp (2 \frac{V}{T} \underbrace{\rho_{\text {nucl. }}\left(m_{B}-3 / 2 m_{\pi}\right)}_{\Delta f})$

Frogs and birds

- Frogs: acknowledge the sign problem
- explore region of small $\frac{\mu}{T}$ where sign pb is mild enough
- find tricks to enlarge this region

Taylor expansion, imaginary μ, strong coupling expansion,...

- Birds: solve the sign pb
- solve QCD ?

- find "QCD-ersatz" which can be made sign-pb free

Complex Langevin, Lefschetz thimble - fermion bags, $Q C_{2} D$, isospin μ, \ldots

- Think different: build an analog QCD simulator with cold atoms

First frog steps: $\frac{\mu}{T} \lesssim 1$

Approximate $\langle W\rangle\left(\frac{\mu}{T}\right)$ by truncated Taylor expansion: $\sum_{k=0}^{n} C_{k}(T)\left(\frac{\mu}{T}\right)^{k}$

- Measure $c_{k}, k=0, . ., n$ in a sign-pb-free $\mu=0$ simulation
- Cheaper variant: fit $c_{k}, k=0, . ., n$ to results of imaginary μ simulations

State of the art: Fodor et al, 1507.07510

Crossover temp. versus chem. pot.

Baryonic chemical potential (MeV)

Crafty frog: "diagrammatic" Monte Carlo

QCD with graphs: why and how?

Exploit feature of QCD: fermions (quarks) \& bosons (gluons), integrated sequentially

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy:
choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy:

$$
\text { choose }\{|\psi\rangle\} \text { "close" to physical eigenstates of } H
$$

QCD physical states are colorsinglets \rightarrow Monte Carlo on colored gluon links is bad idea

Motivation: how to make the sign problem milder?

- Severity of sign pb. is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are colorsinglets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \operatorname{det}(\{U\})$

- Monte Carlo over gluon fields $\{U\}$

Reverse order: - integrate over gluons $\{U\}$ analytically

- Monte Carlo over quark color singlets (hadrons)
- Caveat: must turn off 4-link coupling in $\beta \sum_{P} \operatorname{Re} \operatorname{Tr} U_{P}$ by setting $\beta=0$

$$
\beta=\frac{6}{g_{0}^{2}}=0: \text { strong-coupling limit } \longleftrightarrow \text { continuum limit }(\beta \rightarrow \infty)
$$

Motivation: how to make the sign problem milder?

- Severity of sign pb . is representation dependent:

Generically: $\quad Z=\operatorname{Tr} e^{-\beta H}=\operatorname{Tr}\left[e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) e^{-\frac{\beta}{N} H}\left(\sum|\psi\rangle\langle\psi|\right) \cdots\right]$
Any complete set $\{|\psi\rangle\}$ will do
If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\left\langle\psi_{k}\right| e^{-\frac{\beta}{N} H}\left|\psi_{l}\right\rangle=e^{-\frac{\beta}{N} E_{k}} \delta_{k l} \geq 0 \rightarrow$ no sign pb

- Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \operatorname{det}(\{U\})$

- Monte Carlo over gluon fields $\{U\}$

Reverse order: - integrate over gluons $\{U\}$ analytically

- Monte Carlo over quark color singlets (hadrons)

$$
Z(\beta=0)=\int \prod_{x} d \bar{\psi} d \psi \quad \prod_{x, \nu}\left(\int d U_{x, \nu} e^{-\left\{\bar{\psi}_{x} U_{x, \nu} \psi_{x+\hat{\nu}}-\text { h.c. }\right\}}\right)
$$

Product of 1-link integrals performed analytically

Strong coupling limit at finite density (staggered quarks)

Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

- Integrate over U's, then over quarks: exact rewriting of $Z(\beta=0)$ New, discrete "dual' degrees of freedom: meson \& baryon worldlines

Constraint at every site:
3 blue symbols ($\bullet \bar{\psi} \psi$, meson hop)
or a baryon loop
Update with worm algorithm: "diagrammatic" Monte Carlo

Strong coupling limit at finite density (staggered quarks)

Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

- Integrate over U's, then over quarks: exact rewriting of $Z(\beta=0)$

New, discrete "dual" degrees of freedom: meson \& baryon worldlines

Constraint at every site:
3 blue symbols ($\bullet \bar{\psi} \psi$, meson hop) or a baryon loop

The dense (crystalline) phase:
1 baryon per site; no space left
$\rightarrow\langle\bar{\psi} \psi\rangle=0$
"diagrammatic" Monte Carlo

Results $\beta \approx 0$

w/Unger, Langelage, Philipsen

- Sign pb almost gone: accessible volumes multiplied by 10^{4}
- Phase diagram $\left(m_{q}=0\right)$: chiral) phase transition

cf. Wikipedia:
$\left(m_{q} \neq 0\right)$

Results - Crude nuclear matter: spectroscopy w/Fromm

- Can compare masses of differently shaped "isotopes"
- $\operatorname{am}(A) \sim a \mu_{B}^{\text {crit }} A+(36 \pi)^{1 / 3} \sigma a^{2} A^{2 / 3}$, ie. (bulk + surface tension)

Bethe-Weizsäcker parameter-free ($\mu_{B}^{\text {crit }}$ and σ measured separately)

- "Magic numbers" with increased stability: $A=4,8,12$ (reduced area)

$\beta>0$: lattice QCD with graphs

- $\beta>0$: 4-link plaquette coupling prevents analytic link integration decouple with Hubbard-Stratonovitch auxiliary variables Q and R

Monomers, dimers, baryons, quarks, all in the background of $\{Q, R\}$

Diagrammatic Monte Carlo for 2d QED

- Gaussian heatbath to update $\{Q, R\}$
- "Meson" worm to update monomers and dimers
- "Electron" worm to update electron loops and dimers generalized from Adams \& Chandrasekharan

Residual sign problem?
Work in progress w/Helvio Vairinhos

The road ahead

- Simulate the 1 -link and 0 -link YM gauge action
- Simulate $U(1)$ gauge + fermions (no chemical potential) at $\beta>0$
- $U(1) \rightarrow S U(3)$
- $\mu \neq 0$

Caveat: • when $\beta>0$, the complex auxiliary fields $Q \& R$ re-introduce a sign pb In physical terms: color neutrality is only true for distances $\gtrsim 1 / \Lambda_{\mathrm{QCD}}$
\rightarrow how large can we take β before the sign pb becomes unmanageable?

- staggered fermions $\rightarrow \quad N_{f}=4$ quark flavors

Conclusions

- Tolstoi:
"Happy families are all alike; each unhappy family is unhappy in its own way"

$$
\text { "happy" } \longrightarrow \text { sign-pb free }
$$

- Finite-density QCD: fermions AND bosons
still a long way to go...

Thank you for your attention

Thank you for your attention

Backup

Sign pb
Overlap pb

More difficulties: the overlap problem

- Further danger: insufficient overlap between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states
\rightarrow WRONG estimates in reweighted ensemble for finite statistics

- Example: sample $\exp \left(-\frac{x^{2}}{2}\right)$, reweight to $\exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2}\right) \rightarrow\langle x\rangle=x_{0}$?

- Estimated $\langle x\rangle$ saturates at largest sampled x-value - Error estimate too small

Insufficient overlap $\left(x_{0}=5\right)$ Solution: Need stats $\propto \exp (\Delta S)$

Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

From QED to QCD: essential facts

QED

Bosons:	photon
Fermions:	electron

Electric charge

QCD

8 gluons
quarks (up, down, strange, ..)
Color charge

Confinement: quarks are bound in color-neutral hadrons: $q q q$ baryons \& $q \bar{q}$ mesons

- Baryons $q q q$: protons, neutrons, i.e. ordinary matter
- Mesons $q \bar{q}$: pions (lightest) and others

Nuclear interactions: residual interactions between color-neutral protons/neutrons \rightarrow Nuclear physics from first principles

Old birds: complex Langevin revival Seiler, Stamatescu, Aarts, Sexty,

- Real action S: Langevin evolution in Monte-Carlo time τ Parisi-Wu 80's $\frac{\partial \phi}{\partial \tau}=-\frac{\delta S[\phi]}{\delta \phi}+\eta$, ie. drift force + noise

Can prove: $\langle W[\phi]\rangle_{\tau}=\frac{1}{Z} \int \mathcal{D} \phi \exp (-S[\phi]) W[\phi]$

- Complex action S ?

Parisi, Klauder, Karsch, Ambjorn,.. Drift force complex \rightarrow complexify field ($\phi^{R}+i \phi^{\prime}$) and simulate as before With luck: $\left\langle W\left[\phi^{R}+i \phi^{\prime}\right]\right\rangle_{\tau}=\frac{1}{Z} \int \mathcal{D} \phi \exp (-S[\phi]) W[\phi]$

Idea: trade oscillatory weight on real axis for positive weight in complex plane

- Gaussian example:

$$
Z(\lambda)=\int d x \exp \left(-x^{2}+\mathbf{i} \lambda \mathbf{x}\right)
$$

Complexify:
$\frac{d}{d \tau}(x+i y)=-2(x+i y)+i \lambda+\eta$
For any observable W, $\langle W(x+i y)\rangle_{\tau}=\langle W(x)\rangle_{z}$
Oscillatory weight (x) _
Positive weight (x, y)

Difficulties with complex Langevin

- Infinite set of necessary conditions to prove correctness
- Simplified: need bounded or exponentially decreasing distribution of $\operatorname{Im}(\phi)$
- Gauge invariance \Longrightarrow flat directions to $\pm i \infty \quad \leftarrow$ "gauge cooling"?
- Convergence lost when noise is made complex
- Action is analytically continued: $S=S_{Y M}+\log \operatorname{det} \not D$ how to deal with cut in $\log \operatorname{det} \mathbb{D}$? with \log singularity when $\operatorname{det} \mathbb{D}=0$??

Caveat:

Complex Langevin gives wrong answer when system is too disordered, also when there is no sign pb! 3d XY model, Aarts \& James, 1005.3468

Robustness?

Importance of classical stationary points + fluctuations

New bird: Lefschetz thimble

- Same starting point as complex Langevin:
 analytic continuation in complexified space
- Follow steepest ascent from action minima \rightarrow constant $\operatorname{Im}(S)$

The weights of all configurations along a thimble have [almost] the same phase

- Problems: - find the many (?) thimbles
- control their phase cancellations
- deal with non-analyticities of S

Under construction

Severity of sign problem? Monitor $\Delta f=-\frac{1}{V} \log \langle\operatorname{sign}\rangle$

- $\langle\operatorname{sign}\rangle=\frac{Z}{Z_{\| \mid}} \sim \exp \left(-\frac{V}{T} \Delta f\left(\mu^{2}\right)\right)$ as expected
- Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, Gain $\mathcal{O}\left(10^{4}\right)$ in the exponent!
- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of local neg. signs caused by spatial baryon hopping:
- no baryon \rightarrow no sign pb (no silver blaze pb.)
- saturated with baryons \rightarrow no sign pb

Results - Phase diagram and Polyakov loop $\left(m_{q}=0\right)$

w/Unger, Langelage, Philipsen

Moving from $\beta=0$ toward the continuum limit $\beta \rightarrow+\infty$

- $\beta=0$: gauge links U are not directly coupled to each other:

$$
Z(\beta=0)=\int \prod_{x} d \bar{\psi} d \psi \quad \prod_{x, \nu}\left(\int d U_{x, \nu} e^{-\left\{\bar{\psi}_{x} U_{x, \nu} \psi_{x+\dot{\nu}}-h . c .\right\}}\right)
$$

Product of 1-link integrals performed analytically

- $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformations

4 links coupled

2 links coupled

links decoupled

Moving from $\beta=0$ toward the continuum limit $\beta \rightarrow+\infty$

Simple: $\mathcal{O}(\beta)$ approximation

- Introduce auxiliary plaquette variables $q_{P}=\{0,1\}$:

$$
\exp \left(\frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)=\sum_{q_{P}=\{0,1\}}\left(\delta_{q_{P}, 0}+\delta_{q_{P}, 1} \frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)+\mathcal{O}\left(\beta^{2}\right)
$$

- Sample $\left\{q_{P}\right\} \rightarrow$ exact at $\mathcal{O}(\beta)$

More ambitious: arbitrary β

- $\beta=0$: gauge links U are not directly coupled to each other:

$$
Z(\beta=0)=\int \prod_{x} d \bar{\psi} d \psi \quad \prod_{x, \nu}\left(\int d U_{x, \nu} e^{-\left\{\bar{\psi}_{x} U_{x, \nu} \psi_{x+i}-\text { h.c. }\right\}}\right)
$$

Product of 1 -link integrals performed analytically

- $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformations

Toward the continuum limit at $\mathcal{O}(\beta) 1406.4397 \rightarrow$ PRL

- Introduce auxiliary plaquette variables $q_{P}=\{0,1\}$:

$$
\exp \left(\frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)=\sum_{q_{P}=\{0,1\}}\left(\delta_{q_{P}, 0}+\delta_{q P, 1} \frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)+\grave{\mathcal{O}} \cdot\left(\mathbb{N}^{\circ}{ }^{\Sigma}\right)
$$

- Sample $\left\{q_{P}\right\} \rightarrow$ exact at $\mathcal{O}(\beta)$
- $q_{P}=1 \rightarrow$ new color-singlet hopping terms $q q g, \bar{q} g$, from $\int d U U e^{-(\bar{\psi} U \psi-\text { h.c. })}$:
- hadrons acquire structure
- hadron interaction by gluon exchange

- $\mu=0$: crosscheck with HMC ok; linear ($a T_{c}$) extrapolation good up to $\beta \sim 1$

Toward the continuum limit at $\mathcal{O}(\beta) 1406.4397 \rightarrow$ PRL

- Introduce auxiliary plaquette variables $q_{P}=\{0,1\}$:

$$
\exp \left(\frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)=\sum_{q_{P}=\{0,1\}}\left(\delta_{q_{P}, 0}+\delta_{q_{P}, 1} \frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)+\mathcal{O}\left(\beta^{2}\right)
$$

- Sample $\left\{q_{P}\right\} \rightarrow$ exact at $\mathcal{O}(\beta)$
- $q_{P}=1 \rightarrow$ new color-singlet hopping terms $q q g, \bar{q} g$, from $\int d U U e^{-(\bar{\psi} U \psi-\text { h.c. })}$:
- hadrons acquire structure
- hadron interaction by gluon exchange

- $\mu=0$: crosscheck with HMC ok; linear ($a T_{c}$) extrapolation good up to $\beta \sim 1$
- $\mu \neq 0$: - phase boundary more "rectangular" with TCP at corner

Toward the continuum limit at $\mathcal{O}(\beta) 1406.4397 \rightarrow$ PRL

- Introduce auxiliary plaquette variables $q_{P}=\{0,1\}$:

$$
\exp \left(\frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)=\sum_{q_{P}=\{0,1\}}\left(\delta_{q_{P}, 0}+\delta_{q_{P}, 1} \frac{\beta}{N_{c}} \operatorname{Re} \operatorname{Tr} U_{P}\right)+\mathcal{O}\left(\beta^{2}\right)
$$

- Sample $\left\{q_{P}\right\} \rightarrow$ exact at $\mathcal{O}(\beta)$
- $q_{P}=1 \rightarrow$ new color-singlet hopping terms $q q g, \bar{q} g$, from $\int d U U e^{-(\bar{\psi} U \psi-\text { h.c. })}$:
- hadrons acquire structure
- hadron interaction by gluon exchange

- $\mu=0$: crosscheck with HMC ok; linear ($a T_{c}$) extrapolation good up to $\beta \sim 1$
- $\mu \neq 0$: - phase boundary more "rectangular" with TCP at corner - liquid-gas CEP splits and moves down?

Going beyond $\mathcal{O}(\beta)$

- $\beta=0$: gauge links U are not directly coupled to each other:

$$
Z(\beta=0)=\int \prod_{x} d \bar{\psi} d \psi \quad \prod_{x, \nu}\left(\int d U_{x, \nu} e^{-\left\{\bar{\psi}_{x} U_{x, \nu} \psi_{x+\nu}-\text { h.c. }\right\}}\right)
$$

Product of 1-link integrals performed analytically

- $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformation:
Hubbard-Stratonovich variant:

Cf. 4-fermi

Further decoupling to "1-link" action \rightarrow link integration possible $\forall \beta$

2-link action \rightarrow 1-link \rightarrow 0-link \quad Vairinhos \& PdF, 1409.8442

- Hubbard-Stratonovich: $\forall Y \in \mathbf{C}^{N \times N}, \quad e^{\operatorname{Tr} Y^{\dagger} Y}=\mathcal{N} \int d X e^{\operatorname{Tr}\left(X^{\dagger} Y+X Y^{\dagger}\right)}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $d X \propto \prod_{i j} d x_{i j} d x_{i j}^{*} e^{-\left|x_{i j}\right|^{2}}$

2-link action \rightarrow 1-link \rightarrow 0-link \quad Vairinhos \& PdF, 1409.8442

- Hubbard-Stratonovich: $\forall Y \in \mathbf{C}^{N \times N}, \quad e^{\operatorname{Tr} Y^{\dagger} Y}=\mathcal{N} \int d X e^{\operatorname{Tr}\left(X^{\dagger} Y+X Y^{\dagger}\right)}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $d X \propto \prod_{i j} d x_{i j} d x_{i j}^{*} e^{-\left|x_{i j}\right|^{2}}$
U_{3}
- $4 \rightarrow$ 2-link action:

$$
Y=\left(U_{1} U_{2}+U_{4}^{\dagger} U_{3}^{\dagger}\right), X=Q
$$

$$
S_{2-\text { link }}=\operatorname{ReTr} Q^{\dagger}\left(U_{1} U_{2}+U_{4}^{\dagger} U_{3}^{\dagger}\right)
$$

- Hubbard-Stratonovich: $\forall Y \in \mathbf{C}^{N \times N}, \quad e^{\operatorname{Tr} Y^{\dagger} Y}=\mathcal{N} \int d X e^{\operatorname{Tr}\left(X^{\dagger} Y+X Y^{\dagger}\right)}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $d X \propto \prod_{i j} d x_{i j} d x_{i j}^{*} e^{-\left|x_{i j}\right|^{2}}$
U_{3}
- $4 \rightarrow$ 2-link action:

$$
Y=\left(U_{1} U_{2}+U_{4}^{\dagger} U_{3}^{\dagger}\right), X=Q
$$

$$
S_{2-\operatorname{link}}=\operatorname{Re} \operatorname{Tr} Q^{\dagger}\left(U_{1} U_{2}+U_{4}^{\dagger} U_{3}^{\dagger}\right)
$$

- $2 \rightarrow$ 1-link action:

$$
Y=\left(U_{1}+Q U_{2}^{\dagger}\right), X=R_{1}
$$

2-link action \rightarrow 1-link \rightarrow 0-link

- Hubbard-Stratonovich: $\forall Y \in \mathbf{C}^{N \times N}, \quad e^{\operatorname{Tr} Y^{\dagger} Y}=\mathcal{N} \int d X e^{\operatorname{Tr}\left(X^{\dagger} Y+X Y^{\dagger}\right)}$ where $X \in \mathbf{C}^{N \times N}$ with Gaussian measure $d X \propto \prod_{i j} d x_{i j} d x_{i j}^{*} e^{-\left|x_{i j}\right|^{2}}$
U_{3}
- $4 \rightarrow$ 2-link action:

$$
Y=\left(U_{1} U_{2}+U_{4}^{\dagger} U_{3}^{\dagger}\right), X=Q
$$

$$
S_{2-\text { link }}=\operatorname{Re} \operatorname{Tr} Q^{\dagger}\left(U_{1} U_{2}+U_{4}^{\dagger} U_{3}^{\dagger}\right)
$$

- $2 \rightarrow$ 1-link action:

$$
Y=\left(U_{1}+Q U_{2}^{\dagger}\right), X=R_{1}
$$

- $1 \rightarrow 0$-link action: integrate out U analytically - also with fermion sources

QCD with graphs

$\beta>0 \rightarrow$ Monomers, dimers, baryons, quarks, all in the background of $\{Q, R\}$

Start with a simpler case: $2 d$ QED

$\beta>0 \rightarrow$ Monomers, dimers, electron loops, in the background of $\{Q, R\}$

Start with a simpler case: 2d QED

- Extend 0 -link representation of $2 d U(1)$ with staggered fermions:

$$
\begin{aligned}
Z(\beta, m) & =\int\left[\prod_{x} d \chi_{x} d \bar{\chi}_{x} e^{2 a m \bar{\psi}_{x} \psi_{x}}\right] \int \mathcal{G}_{\beta}[Q, R] \prod_{x, \mu} \int d U e^{\operatorname{Re}\left(\left(\beta J_{x \mu}^{\dagger}+2 \eta_{x \mu} \psi_{x} \psi_{x+\hat{\mu}}\right)^{\dagger} U\right)} \\
& =\int \mathcal{G}_{\beta}[Q, R] \prod_{x, \mu} I_{0}\left(\beta\left|J_{x \mu}\right|\right) \sum_{\{n, k, C\}}\left(\prod_{x}(2 a m)^{n_{x}}\right)\left(\sigma_{F}(C) \prod_{i=1}^{\# C} 2 \operatorname{Re}(W(C))\right)
\end{aligned}
$$

i.e. monomers, dimers and electron loops

- weight of electron loop is global and can be negative

$$
\begin{gathered}
W(C)=\prod_{(x, \mu) \in C} \widetilde{U}_{x \mu} \\
\widetilde{U}_{x \mu}=\frac{I_{1}\left(\beta\left|J_{x \mu}\right|\right)}{I_{0}\left(\beta\left|J_{x \mu}\right|\right)} \frac{J_{x \mu}}{\left|J_{x \mu}\right|}
\end{gathered}
$$

Start with a simpler case: $2 d$ QED

- Diagrammatic (0-link) representation of $2 d U(1)$ with staggered fermions:

$$
\begin{aligned}
Z(\beta, m)= & \int \mathcal{G}_{\beta}[Q, R] \prod_{x, \mu} I_{0}\left(\beta\left|J_{x \mu}\right|\right) \sum_{\{n, k, C\}}\left(\prod_{x}(2 a m)^{n_{x}}\right)\left(\sigma_{F}(C) \prod_{i=1}^{\# C} 2 \operatorname{Re}(W(C))\right) \\
& \text { i.e. monomers, dimers (weight 1) and electron loops }
\end{aligned}
$$

- Careful: weight of electron loop is global and can be negative

$$
\begin{aligned}
& \sigma_{F}(C)= \pm 1 \quad \text { depends on loop geometry } \\
& W(C)=\prod_{(x, \mu) \in C} \widetilde{U}_{x \mu} \\
& \widetilde{U}_{x \mu}=\frac{I_{1}\left(\beta\left|J_{x \mu}\right|\right)}{I_{0}\left(\beta\left|J_{x \mu}\right|\right)} \underbrace{J_{x \mu}} \text { phase factor }
\end{aligned}
$$

Monte Carlo

- Gaussian heatbath to update $\{Q, R\}$
- "Meson" worm to update monomers and dimers
- "Electron" worm to update electron loops and dimers generalized from Adams \& Chandrasekharan

Residual sign problem?
Work in progress w/Helvio Vairinhos

Sign problems

- The sign $\sigma(C)$ has a bosonic $\sigma_{B}(C)$ and a fermionic $\sigma_{F}(C)$ contribution:

$$
\sigma(C)=\underbrace{\operatorname{sign}\left(\prod_{i=1}^{\# C} 2 \operatorname{Re}\left(W\left(C_{i}\right)\right)\right)}_{\sigma_{B}(C)} \times \sigma_{F}(C)
$$

Valuable crosschecks

All methods agree for $\mu / T \lesssim \mathcal{O}(1)$ on small lattices

Here, $T_{c}(\mu)$ vs μ / T

- Main results: - curvature of pseudocritical line $\left.\frac{d^{2} T_{c}}{d \mu^{2}}\right|_{\mu=0}$
- absence of critical point for $\frac{\mu}{T} \lesssim 1$

Alternative at $T \approx 0: \mu=0+$ baryonic sources/sinks

Signal-to-noise ratio of N-baryon correlator $\propto \exp \left(-N\left(m_{B}-\frac{3}{2} m_{\pi}\right) t\right)$

- Mitigated with variational baryon ops. $\rightarrow m_{\text {eff }}$ plateau for 3 or 4 baryons ?

Savage et al., 1004.2935
At least 2 baryons \rightarrow nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

- Beautiful results with up to $12 \rightarrow 72$ pions or kaons Detmold et al., eg. 0803.2728
(cf. isospin- μ : no sign pb.)

Liquid-gas endpoint moves to lower temperatures as β increases

Jump at $\beta=0$ becomes crossover as β grows

Monte Carlo algorithms

- Bosonic updates:

1. Gaussian heatbath for the auxiliary fields $(Q, R)+$ HS transformations (with the help of an auxiliary $U(1)$ field)
2. Metropolis update to correct for electron loop weights

$$
\underbrace{\mathcal{G}_{\beta}[Q, R] \prod_{x, \mu} I_{0}\left(\beta\left|J_{x \mu}\right|\right)}_{\text {Heatbath (local) }} \underbrace{\prod_{i=1}^{\# C} 2 \operatorname{Re}\left(W\left(C_{i}\right)\right)}_{\text {Metropolis (global) }}
$$

- Fermionic updates:

1. "Meson" worm algorithm: Updates the monomer-dimer cover, with target distribution:

$$
w_{m}=\prod_{x}(2 a m)^{n_{x}} \prod_{x, \mu} 1
$$

2. Electron worm algorithm: Transforms electron loops into dimers and vice versa, with target distribution:

$$
w_{e}=\prod_{x, \mu} 1 \prod_{i=1}^{\# C}\left|2 \operatorname{Re}\left(W\left(C_{i}\right)\right)\right|=\underbrace{\prod_{x, \mu} 1\left(\frac{I_{1}\left(\beta\left|J_{x \mu}\right|\right)}{I_{0}\left(\beta\left|J_{x \mu}\right|\right)}\right)^{b x}}_{\text {Worm (local) }} \underbrace{\prod_{i=1}^{\# C}\left|2 \cos \left(\varphi\left(C_{i}\right)\right)\right|}_{\text {Metropolis (global) }}
$$

Adams \& Chandrasekharan (2003)
Chandrasekharan \& Jiang (2006)

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\gamma_{5}\left(i p+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i p+m-\mu \gamma_{0}\right)=\left(i p+m-\mu^{*} \gamma_{0}\right)^{\dagger}
$$

$$
\operatorname{det} \not D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$ $\gamma_{5}\left(i \phi+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i \phi+m-\mu \gamma_{0}\right)=\left(i \phi+m-\mu^{*} \gamma_{0}\right)^{\dagger}$

$$
\operatorname{det} \not D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\begin{aligned}
\gamma_{5}\left(i p b+m+\mu \gamma_{0}\right) \gamma_{5}= & \left(-i p p+m-\mu \gamma_{0}\right)=\left(i p p+m-\mu^{*} \gamma_{0}\right)^{\dagger} \\
& \operatorname{det} \not D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
\end{aligned}
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d \varpi \sim \operatorname{det} \mathbb{D}$ must be complex to get correct physics:

\langle Tr Polyakov $\rangle=\exp \left(-\frac{1}{T} F_{\mathrm{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi-\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$
$\left\langle\right.$ Tr Polyakov* $\left.{ }^{*}\right\rangle=\exp \left(-\frac{1}{T} F_{\bar{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi+\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$$
\mu \neq 0 \Rightarrow F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im} d \varpi \neq 0
$$

Why are we stuck at $\mu=0$ ？The＂sign problem＂

－quarks anti－commute \rightarrow integrate analytically： $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$
$\gamma_{5}\left(i p+m+\mu \gamma_{0}\right) \gamma_{5}=\left(-i \phi+m-\mu \gamma_{0}\right)=\left(i p+m-\mu^{*} \gamma_{0}\right)^{\dagger}$

$$
\operatorname{det} \mathscr{D}(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
$$

det real only if $\mu=0$（or $i \mu_{i}$ ），otherwise can／will be complex
－Unavoidable as soon as one integrates over fermions（hint？）
－Measure $d \varpi \sim \operatorname{det} \mathbb{D}$ must be complex to get correct physics：

\langle Tr Polyakov $\rangle=\exp \left(-\frac{1}{T} F_{\mathrm{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi-\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$
$\left\langle\right.$ Tr Polyakov＊$\left.{ }^{*}\right\rangle=\exp \left(-\frac{1}{T} F_{\bar{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi+\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$$
\mu \neq 0 \Rightarrow F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im} d \varpi \neq 0
$$

－Origin：$\mu \neq 0$ breaks charge conj．symm．，ie．usually complex conj．

Why are we stuck at $\mu=0$? The "sign problem"

- quarks anti-commute \rightarrow integrate analytically: $\operatorname{det}\left(D(U)+m+\mu \gamma_{0}\right)$

$$
\begin{aligned}
\gamma_{5}\left(i p p+m+\mu \gamma_{0}\right) \gamma_{5} & =\left(-i \not p+m-\mu \gamma_{0}\right)=\left(i p p+m-\mu^{*} \gamma_{0}\right)^{\dagger} \\
& \operatorname{det} \not D(\mu)=\operatorname{det}^{*} \not D\left(-\mu^{*}\right)
\end{aligned}
$$

det real only if $\mu=0$ (or $i \mu_{i}$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d \varpi \sim \operatorname{det} D$ must be complex to get correct physics:

\langle Tr Polyakov $\rangle=\exp \left(-\frac{1}{T} F_{\mathrm{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi-\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$\left\langle\right.$ Tr Polyakov $\left.{ }^{*}\right\rangle=\exp \left(-\frac{1}{T} F_{\bar{q}}\right)=\int \operatorname{Re} \operatorname{Pol} \times \operatorname{Re} d \varpi+\operatorname{Im} \operatorname{Pol} \times \operatorname{Im} d \varpi$

$$
\mu \neq 0 \Rightarrow F_{q} \neq F_{\bar{q}} \Rightarrow \operatorname{Im} d \varpi \neq 0
$$

- Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Complex determinant \Longrightarrow no probabilistic interpretation \longrightarrow Monte Carlo ??

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral

Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {Ocd }}(\mu)}{Z_{|\operatorname{CcD}|}(\mu)}=e^{-\frac{v}{T}\left[f\left(\mu_{\omega} \sigma+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega}=+\mu, \mu_{\sigma}=-\mu\right)\right]}$
(for $N_{f}=2$)

$\Delta f\left(\mu^{2}, T\right)$ large in the Bose phase \rightarrow "severe" sign pb.
"Silverblaze pb": phase of det changes groundstate

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched" $|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {QcD }}(\mu)}{Z_{\text {QCDD }}(\mu)}=e^{-\frac{v}{T}\left[f\left(\mu_{\sigma}=+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega} F+\mu, \mu_{\sigma} F-\mu\right)\right]}$
(for $N_{f}=2$)

Extremely hard

Sampling for QCD at finite μ

- QCD: sample with $\left|\operatorname{Re}\left(\operatorname{det}(\mu)^{N_{f}}\right)\right|$ optimal, but not equiv. to Gaussian integral Can choose instead: $|\operatorname{det}(\mu)|^{N_{f}}$, i.e. "phase quenched"
$|\operatorname{det}(\mu)|^{N_{f}}=\operatorname{det}(+\mu)^{\frac{N_{f}}{2}} \operatorname{det}(-\mu)^{\frac{N_{f}}{2}}$, ie. isospin chemical potential $\mu_{u}=-\mu_{d}$ couples to $u \bar{d}$ charged pions \Rightarrow Bose condensation of π^{+}when $|\mu|>\mu_{\text {crit }}(T)$
- av. sign $=\frac{Z_{\text {QcD }}(\mu)}{Z_{\text {|ССD }}(\mu)}=e^{-\frac{v}{T}\left[f\left(\mu_{\digamma} F+\mu, \mu_{\sigma} F+\mu\right)-f\left(\mu_{\omega} F+\mu, \mu_{\sigma} F-\mu\right)\right]}$
(for $N_{f}=2$)

$\Delta f\left(\mu^{2}, T\right)$ large in the Bose phase
\rightarrow "severe" sign pb.

Not as hard

$$
\frac{\mu}{T} \lesssim 1
$$

