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The lattice is the only known gauge-invariant, 
non-perturbative regulator of QFT

�4 :  mass diverges with cutoff ? 

QED:      diverges with cutoff ?e

              changes with gauge ?

=)     Renormalization

1974:  invented by Ken Wilson

1980:  first Yang-Mills simulation by Mike Creutz



Basic properties of QCD

• QCD describes properties of quarks (cf. electrons – fermions)
interacting by exchanging gluons (cf. photons – bosons)

• QCD is asymptotically free: weaker interaction at higher energy



The flip side of asymptotic freedom: “infrared slavery”

• Strong coupling at low energy ! non-perturbative

• Quarks are confined into color-neutral (color singlet) bound-states (hadrons):

qqq baryons: proton & neutron (ordinary matter), ...

qq̄ mesons: pion (lightest), kaon, rho, ...

Exotics: glueballs, tetraquarks qqq̄q̄, pentaquarks qqqqq̄, etc...

In principle, all calculable by Lattice QCD simulations



Scope of lattice QCD simulations: Physics of color singlets

* “One-body” physics: confinement
hadron masses
form factors, etc..



       Example:  hadron masses

a

BMW collaboration PACS-CS collaboration
arXiv:0807.1661arXiv:0906.3599        Science!

arXiv:1406.4088        Science

Follow-up: neutron-proton mass diff.
!
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Scope of lattice QCD simulations: Physics of color singlets

* “One-body” physics: confinement
hadron masses
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*** Many-[composite]-body physics: nuclear matter
phase diagram vs (temperature T , density $ µB)



Motivation

What happens to matter

when it is heated and/or

compressed?



Water changes its state when heated or compressed

What happens to quarks and gluons when heated or compressed?

First-order transition

!

Second-order transition

critical opalescence



The wonderland phase diagram of QCD from Wikipedia

quark

= 1
3µBaryon

T or µ ! 1:
interaction weak

(asymptotic freedom)

Also:
• crystal phase(s)
• quarkyonic phase
• strangelets
. . .

Caveat: everything in red is a conjecture



Heavy-ion collisions
T

µ

confined

QGP

Color superconductor

Tc
♥
QCD critical point

Knobs to turn:
- atomic number of ions
- collision energy

p
s

So far, no sign of QCD critical point
(esp. RHIC beam energy scan)

“critical opalescence” ?



Finite µ: what is known?

Minimal, possible phase diagram

T

µ

confined

QGP

Color superconductor

Tc

Monte Carlo? sign problem as soon as µ 6= 0

crossover (lattice)

Nuclear liquid-gas transition (exp.)



The first Monte Carlo experiment (1777)

Probability of intersection: 2
⇡



The extraordinary e�ciency of Monte Carlo

Typical: Z =
P

states

exp[�S(state)]; hW i = 1
Z

P
states

W (state) exp[�S(state)]

Number of states ⇠ exp(volume V )

Monte Carlo: approximate Z by random subset of n states

Law of large numbers ! error ⇠ n

�1/2 8V

How to sample Z =
P

states

exp[�S(state)] ?

- Random sampling: Pick states with uniform prob., give them weight exp(�S)

- Importance sampling: Pick states with prob. exp(�S), give them uniform weight

Metropolis et al, 1953



Monte Carlo: no pain, no gain...

Monte Carlo highly e�cient: importance sampling Prob(conf) / exp[�S(conf)]

• But all low-hanging fruits have been picked by now

• Further progress requires tackling the “sign problem”:

9 conf s.t. “Boltzmann weight” exp[�S(conf)] /2 R�0

No probabilistic interpretation — Monte Carlo impossible??

• Examples:

- real-time quantum evolution:
weight in path integral / exp(� i

~Ht) �! phase cancellations

- Hubbard model:
repulsion Un"n# !

Hubbard-Stratonovich
det" det#

complex except at half-filling (additional symmetry)

- QCD at non-zero density / chemical potential:
integrate out the fermions det(D/ + µ�0)2 (Nf = 2)
complex unless µ = 0 or pure imaginary (additional symmetry)



Lattice QCD: Euclidean path integral

space+ imag. time ! 4d hypercubic grid:

a

quark

gluon

 (x)

Uµ(x) 3⇥3

matrix

Z =
R DUD ̄D e�SE [{U, ¯ , }]

• Discretized action SE :

• �!  ̄(x)Uµ(x) (x + µ̂) + h.c ., Dirac operator
 ̄D/  

• , �! � ReTrUP , UP plaquette matrix Yang-Mills action

a ! 0 , � = 6

g2

0

! 1 1

4

Fµ⌫Fµ⌫

• Monte Carlo: with Grassmann variables  (x) (y)=� (y) (x) ??
Integrate out analytically (Gaussian) ! determinant non-local

Prob(config{U}) / det2 D/ ({U}) e+�
P

P ReTrUP real non-negative when µ = 0



Sampling oscillatory integrands

• Example: Z (�) =
R
dx exp(�x2 + i�x) =

R
dx exp(�x2) cos(�x)

-3  0  3

in
te

gr
an

d

x

lambda=  0
lambda=20

• Z (�)/Z (0) = exp(��2/4): exponential cancellations
! truncating deep in the tail at x ⇠ � gives O(100%) error

“Every x is important” $ How to sample?



Computational complexity of the sign pb

• How to study: Z⇢ ⌘ R
dx ⇢(x), ⇢(x) 2 R, with ⇢(x) sometimes negative ?

Reweighting: sample with |⇢(x)|, and “put the sign in the observable”:

hW i ⌘
R
dx W (x)⇢(x)R

dx ⇢(x)
=

R
dx [W (x)sign(⇢(x))] |⇢(x)|R

dx sign(⇢(x)) |⇢(x)| =
hW sign(⇢)i|⇢|
hsign(⇢)i|⇢|

• hsign(⇢)i|⇢| =
R
dx sign(⇢(x))|⇢(x)|R

dx |⇢(x)| = Z⇢

Z|⇢|
= exp(�V

T �f (µ2,T )| {z }
diff. free energy dens.

), exponentially small

Each meas. of sign(⇢) gives value ±1 =) statistical error ⇡ 1p
# meas.

Constant relative accuracy =) need statistics / exp(+2V

T

�f )

Large V , low T inaccessible: signal/noise ratio degrades exponentially

“Figure of merit” �f : measures severity of sign pb.
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The CPU e↵ort grows exponentially with L

3/T

CPU e↵ort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 0  1  2  3  4  5

O
ps

Box size in fm

1 Exaflop x year

T = Tc
100 MeV

50 MeV
10 MeV

Crudely based on: • 1 sec on 1GF laptop for 24 lattice, a = 0.1 fm
• e↵ort / exp(2V

T ⇢
nucl.(mB � 3/2m⇡)| {z }

�f

)



Frogs and birds

• Frogs: acknowledge the sign problem

- explore region of small µ
T where sign pb is mild enough

- find tricks to enlarge this region

Taylor expansion, imaginary µ, strong coupling expansion,...

• Birds: solve the sign pb

- solve QCD ?

- find “QCD-ersatz” which can be made sign-pb free

Complex Langevin, Lefschetz thimble – fermion bags, QC2D, isospin µ,...

• Think di↵erent: build an analog QCD simulator with cold atoms



First frog steps: µ
T . 1

Approximate hW i( µ
T ) by truncated Taylor expansion:

P
n

k=0 ck(T )
� µ
T

�k

• Measure ck , k = 0, .., n in a sign-pb-free µ = 0 simulation

• Cheaper variant: fit ck , k = 0, .., n to results of imaginary µ simulations

State of the art: Fodor et al, 1507.07510

Crossover temp. 
versus chem. pot.



Crafty frog: “diagrammatic” Monte Carlo

QCD with graphs: why and how?

Exploit feature of QCD: fermions (quarks)&bosons (gluons), integrated sequentially

Prospects

I Generalize the formalism to non-Abelian gauge groups, in particular SU(3):

I Is there a way to resum the residual fermionic d.o.f. (baryons, electrons, ...)
in order to alleviate the fermionic sign problem?



Motivation: how to make the sign problem milder?

• Severity of sign pb. is representation dependent:

Generically: Z = Tre��H = Tr

h
e�

�
N H (

P | ih |) e� �
N H (

P | ih |) · · ·
i

Any complete set {| i} will do

If {| i} form an eigenbasis of H, then h k |e� �
N H | li=e�

�
N Ek �kl � 0 ! no sign pb
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QCD physical states are color singlets ! Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically ! det({U})
• Monte Carlo over gluon fields {U}

Reverse order: • integrate over gluons {U} analytically
• Monte Carlo over quark color singlets (hadrons)

• Caveat: must turn o↵ 4-link coupling in �
P

P ReTrUP by setting �=0

� = 6
g2
0
= 0: strong-coupling limit  ! continuum limit (� !1)



Motivation: how to make the sign problem milder?

• Severity of sign pb. is representation dependent:

Generically: Z = Tre��H = Tr

h
e�

�
N H (
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QCD physical states are color singlets ! Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically ! det({U})
• Monte Carlo over gluon fields {U}

Reverse order: • integrate over gluons {U} analytically
• Monte Carlo over quark color singlets (hadrons)

Z (� = 0) =
R Q

x d ̄d 
Q

x,⌫

⇣R
dUx,⌫e

�{ ̄xUx,⌫ x+⌫̂�h.c.}
⌘

Product of 1-link integrals performed analytically



Strong coupling limit at finite density (staggered quarks)
Chandrasekharan, Wenger, PdF, Unger, Wol↵, ...

• Integrate over U’s, then over quarks: exact rewriting of Z (� = 0)

New, discrete ”dual” degrees of freedom: meson & baryon worldlines

Constraint at every site:
3 blue symbols (•  ̄ , meson hop)
or a baryon loop

Update with worm algorithm: ”diagrammatic” Monte Carlo



Strong coupling limit at finite density (staggered quarks)
Chandrasekharan, Wenger, PdF, Unger, Wol↵, ...

• Integrate over U’s, then over quarks: exact rewriting of Z (� = 0)

New, discrete ”dual” degrees of freedom: meson & baryon worldlines

Constraint at every site:
3 blue symbols (•  ̄ , meson hop)
or a baryon loop

The dense (crystalline) phase:
1 baryon per site; no space left

! h ̄ i = 0
Update with worm algorithm: ”diagrammatic” Monte Carlo



Results � ⇡ 0 w/Unger, Langelage, Philipsen

• Sign pb almost gone: accessible volumes multiplied by 104

• Phase diagram (mq = 0):

� = 0 O(�) corrections
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cf.  Wikipedia:

chiral TCP

(mq 6= 0)

chiral  phase transition



Results – Crude nuclear matter: spectroscopy w/Fromm

A = 1 A = 2 A = 3

A = 4

A = 8A = 7A = 5 A = 6

A = 9 A = 10 A = 11 A = 12 0 2 4 6 8 10 12
1.5

2

2.5

3

A

 

am(A) / A

a µcrit
B

• Can compare masses of di↵erently shaped “isotopes”

• am(A) ⇠ aµcrit

B A+ (36⇡)1/3�a2A2/3, ie. (bulk + surface tension)

Bethe-Weizsäcker parameter-free (µcrit

B and � measured separately)

• “Magic numbers” with increased stability: A = 4, 8, 12 (reduced area)



� > 0: lattice QCD with graphs

• � > 0: 4-link plaquette coupling prevents analytic link integration

decouple with Hubbard-Stratonovitch auxiliary variables Q and R

Monomers, dimers, baryons, quarks, all in the background of {Q,R}

( )+ ( )+ + +Prospects

I Generalize the formalism to non-Abelian gauge groups, in particular SU(3):

I Is there a way to resum the residual fermionic d.o.f. (baryons, electrons, ...)
in order to alleviate the fermionic sign problem?

Q

Q

R

R

q

dimer

baryon



Diagrammatic Monte Carlo for 2d QED

• Gaussian heatbath to update {Q,R}
• “Meson” worm to update monomers and dimers

• “Electron” worm to update electron loops and dimers
generalized from Adams & Chandrasekharan

Residual sign problem? Work in progress w/Helvio Vairinhos



The road ahead w/Helvio Vairinhos

• Simulate the 1-link and 0-link YM gauge action Done! 1409.8442

• Simulate U(1) gauge + fermions (no chemical potential) at � > 0

• U(1) ! SU(3)

• µ 6= 0
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Caveat: • when � > 0, the complex auxiliary fields Q & R re-introduce a sign pb

In physical terms: color neutrality is only true for distances & 1/⇤
QCD

! how large can we take � before the sign pb becomes unmanageable?

• staggered fermions ! Nf = 4 quark flavors



Conclusions

• Tolstoi:

“Happy families are all alike; each unhappy family is unhappy in its own way”

“happy” �! sign-pb free

• Finite-density QCD: fermions AND bosons

still a long way to go...

Thank you for your attention



Thank you for your attention



Backup



Sign pb Overlap pb



More di�culties: the overlap problem

• Further danger: insu�cient overlap between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states

! WRONG estimates in reweighted ensemble for finite statistics

• Example: sample exp(� x2

2 ), reweight to exp(� (x�x0)
2

2 ) ! hxi = x0 ?
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• Estimated hxi saturates
at largest sampled x-value
• Error estimate too small

Insu�cient overlap (x0=5)
Very non-Gaussian distribu-
tion of reweighting factor
Log-normal Kaplan et al.

Sampled Reweighted

Solution: Need stats / exp(�S)



From QED to QCD: essential facts

QED QCD

Bosons: photon 8 gluons

Fermions: electron quarks (up, down, strange, ..)

Electric charge Color charge

Confinement: quarks are bound in color-neutral hadrons: qqq baryons & qq̄ mesons

• Baryons qqq: protons, neutrons, i.e. ordinary matter
• Mesons qq̄: pions (lightest) and others

Nuclear interactions: residual interactions between color-neutral protons/neutrons

! Nuclear physics from first principles



Old birds: complex Langevin revival Seiler, Stamatescu, Aarts, Sexty,..

• Real action S : Langevin evolution in Monte-Carlo time ⌧ Parisi-Wu 80’s
@�
@⌧ = � �S[�]

�� + ⌘, ie. drift force + noise

Can prove: hW [�]i⌧ = 1
Z

R D� exp(�S [�])W [�]

• Complex action S ? Parisi, Klauder, Karsch, Ambjorn,..

Drift force complex! complexify field (�R + i�I ) and simulate as before
With luck: hW ⇥

�R + i�I
⇤i⌧ = 1

Z

R D� exp(�S [�])W [�]

Idea: trade oscillatory weight on real axis for positive weight in complex plane

• Gaussian example:
Z (�) =

R
dx exp(�x2 + i�x)

Complexify:
d
d⌧ (x + iy) = �2(x + iy) + i�+ ⌘

For any observable W ,
hW (x + iy)i⌧ = hW (x)iZ

Oscillatory weight(x)
Positive weight(x,y)

• saddle pt: x = 0, y = �
2

• Flat directions going to 1? (SU(N)!SL(N,C))

• S = Tr log ! cut??

• Towards solving F-P eq.: e↵. pot., loop (noise) expansion Guralnik & Pehlevan

• Cf. PT -symmetric quantum mechanics, complexified class. mech. C. Bender



Di�culties with complex Langevin

• Infinite set of necessary conditions to prove correctness

• Simplified: need bounded or exponentially decreasing distribution of Im(�)

• Gauge invariance =) flat directions to ±i1  “gauge cooling”?

• Convergence lost when noise is made complex

• Action is analytically continued: S = SYM + log detD/
how to deal with cut in log detD/ ? with log singularity when detD/ = 0 ??

Caveat:
Complex Langevin gives wrong answer when system is too disordered,
also when there is no sign pb! 3d XY model, Aarts & James, 1005.3468

Robustness?

Importance of classical stationary points + fluctuations Guralnik & Pehlevan



New bird: Lefschetz thimble

• Same starting point as complex Langevin:

analytic continuation in complexified space

• Follow steepest ascent from action minima ! constant Im(S)

The weights of all configurations along a thimble have [almost] the same phase

• Problems: - find the many (?) thimbles

- control their phase cancellations

- deal with non-analyticities of S

Under construction



Severity of sign problem? Monitor �f = � 1
V loghsigni

 0
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• hsigni = Z
Z||

⇠ exp(�V
T �f (µ2)) as expected

• Determinant method ! �f ⇠ O(1). Here, Gain O(104) in the exponent!

- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of local neg. signs caused by spatial baryon hopping:

• no baryon ! no sign pb (no silver blaze pb.)
• saturated with baryons ! no sign pb



Results – Phase diagram and Polyakov loop (mq = 0)
w/Unger, Langelage, Philipsen
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• Chiral phase transition (mq = 0):
2nd! 1rst order as µ increases: tricritical point

• Finite-Nt corrections ! continuous-time
• Baryon density jumps at 1rst-order transition

• Polyakov loop changes at chiral transition
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Moving from �=0 toward the continuum limit � !+1
• � = 0: gauge links U are not directly coupled to each other:

Z (� = 0) =
R Q

x d ̄d 
Q

x,⌫

⇣R
dUx,⌫e

�{ ̄xUx,⌫ x+⌫̂�h.c.}
⌘

Product of 1-link integrals performed analytically

• � 6= 0: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformations

Q

1

QR2

R

   4 links coupled    2 links coupled   links decoupled



Moving from �=0 toward the continuum limit � !+1

Simple: O(�) approximation

• Introduce auxiliary plaquette variables qP = {0, 1}:
exp( �Nc

ReTr UP) =
P

qP={0,1}
⇣
�qP ,0 + �qP ,1

�
Nc

ReTrUP

⌘
+ O(�2)

• Sample {qP} ! exact at O(�) 1406.4397 ! PRL

More ambitious: arbitrary �

• � = 0: gauge links U are not directly coupled to each other:

Z (� = 0) =
R Q

x d ̄d 
Q

x,⌫

⇣R
dUx,⌫e

�{ ̄xUx,⌫ x+⌫̂�h.c.}
⌘

Product of 1-link integrals performed analytically

• � 6= 0: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformations



Toward the continuum limit at O(�) 1406.4397 ! PRL

• Introduce auxiliary plaquette variables qP = {0, 1}:
exp( �Nc

ReTr UP) =
P

qP={0,1}

⇣
�qP ,0 + �qP ,1

�
Nc

ReTrUP

⌘
+ O(�2)

• Sample {qP} ! exact at O(�)

• qP = 1 ! new color-singlet hopping terms qqg , q̄g , from
R
dUUe�(

¯ U �h.c.):
- hadrons acquire structure
- hadron interaction by gluon exchange
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Going beyond O(�) Vairinhos & PdF, 1409.8442

• � = 0: gauge links U are not directly coupled to each other:

Z (� = 0) =
R Q

x d ̄d 
Q

x,⌫

⇣R
dUx,⌫e

�{ ¯ xUx,⌫ x+⌫̂�h.c.}
⌘

Product of 1-link integrals performed analytically

• � 6= 0: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformation:

Hubbard-Stratonovich variant:

� ReTrUP()

�� ReTr

�|Q|2 � Q†U
1

U
2

� U
3

U
4

Q
�

ie. “2-link” action (Fabricius & Haan, 1984)

Q

U

U

U

U

1

2

3

4

Cf. 4-fermi

Further decoupling to “1-link” action ! link integration possible 8�



2-link action ! 1-link ! 0-link Vairinhos & PdF, 1409.8442

• Hubbard-Stratonovich: 8Y 2 C

N⇥N , eTrY †Y = N R
dX eTr(X†Y+XY †

)

where X 2 C

N⇥N with Gaussian measure dX / Q
ij dxijdx

⇤
ij e

�|xij |2
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dX eTr(X†Y+XY †
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⇤
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• 4 ! 2-link action:

Y = (U
1

U
2

+ U†
4

U†
3

), X = Q

S
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= ReTr Q†(U
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U
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)
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• 1 ! 0-link action: integrate out U analytically – also with fermion sources



QCD with graphs

� > 0 ! Monomers, dimers, baryons, quarks, all in the background of {Q,R}

Prospects

I Generalize the formalism to non-Abelian gauge groups, in particular SU(3):

I Is there a way to resum the residual fermionic d.o.f. (baryons, electrons, ...)
in order to alleviate the fermionic sign problem?



Start with a simpler case: 2d QED

� > 0 ! Monomers, dimers, electron loops, in the background of {Q,R}



Start with a simpler case: 2d QED

• Extend 0-link representation of 2d U(1) with staggered fermions:

i.e. monomers, dimers and electron loops

• weight of electron loop is global and can be negative

Diagrammatic compact lattice QED

I We can now extend the 0-link representation of compact lattice QED with
N

f

= 1 staggered fermions to arbitrary �:

Z(�,m) =

Z
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Start with a simpler case: 2d QED
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phase factor



Monte Carlo

• Gaussian heatbath to update {Q,R}
• “Meson” worm to update monomers and dimers

• “Electron” worm to update electron loops and dimers
generalized from Adams & Chandrasekharan

Residual sign problem? Work in progress w/Helvio Vairinhos



Sign problems

I The sign �(C) has a bosonic �
B

(C) and a fermionic �
F

(C) contribution:

�(C) = sign

0

@

#C

Y

i=1

2Re(W (C
i

))

1

A

| {z }

�B(C)

⇥ �
F

(C)

2 ⇥ 2 lattice



Valuable crosschecks

All methods agree for µ/T . O(1) on small lattices

Here, Tc(µ) vs µ/T
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D’Elia, Lombardo 163

Azcoiti et al., 83

Fodor, Katz, 63

Our reweighting, 63

deForcrand, Kratochvila, 63

imaginary µ

2 param. imag. µ

dble reweighting, LY zeros

Same, susceptibilities

canonical

Nf = 4 staggered,

amq = 0.05,Nt = 4

PdF & Kratochvila

LAT05

• Main results: - curvature of pseudocritical line d2Tc

dµ2

|µ=0

- absence of critical point for µ
T . 1



Alternative at T ⇡ 0: µ = 0 + baryonic sources/sinks

Signal-to-noise ratio of N-baryon correlator / exp(�N(m
B

� 3

2

m⇡)t)

Lepage 1989

C
B

(t) = ⇠ e

�m

B

t

|C
B

(t)|2 = X ⇠ ⇠ e

�3m⇡t

• Mitigated with variational baryon ops. ! m
eff

plateau for 3 or 4 baryons ?
Savage et al., 1004.2935

At least 2 baryons ! nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

• Beautiful results with up to 12!72 pions or kaons Detmold et al., eg. 0803.2728

(cf. isospin-µ: no sign pb.)



Liquid-gas endpoint moves to lower temperatures as �
increases
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Monte Carlo algorithms

I Bosonic updates:
1. Gaussian heatbath for the auxiliary fields (Q,R) + HS transformations

(with the help of an auxiliary U(1) field)
2. Metropolis update to correct for electron loop weights

G� [Q,R]
Y

x,µ

I0(�|Jxµ|)

| {z }

Heatbath (local)

#C
Y

i=1

2Re(W (Ci))

| {z }

Metropolis (global)

I Fermionic updates:

1. “Meson” worm algorithm: Updates the monomer-dimer cover, with target
distribution:

wm =
Y

x

(2am)
nx

Y

x,µ

1

2. Electron worm algorithm: Transforms electron loops into dimers and vice
versa, with target distribution:

we =
Y

x,µ

1

#C
Y

i=1

|2Re(W (Ci))| =
Y

x,µ

1

✓

I1(�|Jxµ|)
I0(�|Jxµ|)

◆bxµ

| {z }

Worm (local)

#C
Y

i=1

|2 cos('(Ci))|

| {z }

Metropolis (global)

Adams & Chandrasekharan (2003)

Chandrasekharan & Jiang (2006)



Why are we stuck at µ = 0? The “sign problem”

• quarks anti-commute ! integrate analytically: det(D/ (U) +m+µ�
0

)
�
5

(ip/ +m+µ�
0

)�
5

= (�ip/ +m�µ�
0

) = (ip/ +m�µ⇤�
0

)†

detD/ (µ) = det⇤ D/ (�µ⇤)

det real only if µ = 0 (or iµ
i

), otherwise can/will be complex
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• Unavoidable as soon as one integrates over fermions (hint?)
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• Origin: µ 6= 0 breaks charge conj. symm., ie. usually complex conj.
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Complex determinant =) no probabilistic interpretation �! Monte Carlo ??



Sampling for QCD at finite µ

• QCD: sample with |Re(det(µ)Nf )| optimal, but not equiv. to Gaussian integral
Can choose instead: | det(µ)|Nf , i.e. “phase quenched”

| det(µ)|Nf = det(+µ)
N

f

2 det(�µ)
N

f

2 , ie. isospin chemical potential µ
u

= �µ
d

couples to ud̄ charged pions ) Bose condensation of ⇡+ when |µ| > µ
crit

(T )

”Silverblaze pb”: phase of det changes groundstate
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Sampling for QCD at finite µ

• QCD: sample with |Re(det(µ)Nf )| optimal, but not equiv. to Gaussian integral
Can choose instead: | det(µ)|Nf , i.e. “phase quenched”
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