Progress toward the phase diagram of QCD from the lattice

Philippe de Forcrand ETH Zürich & CERN

2nd Int. Workshop, Tirana, Albania, Sept. 26, 2016

< □ > < □ > < □ > < □ > < □ > < □ >

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

 ϕ^4 : mass diverges with cutoff ?

QED: e diverges with cutoff ?

changes with gauge ?

 \implies Renormalization

The lattice is the only known gauge-invariant, non-perturbative regulator of QFT

1974: invented by Ken Wilson

1980: first Yang-Mills simulation by Mike Creutz

Basic properties of QCD

- QCD describes properties of *quarks* (cf. electrons fermions) interacting by exchanging *gluons* (cf. photons – bosons)
- QCD is *asymptotically free*: weaker interaction at higher energy

The flip side of asymptotic freedom: "infrared slavery"

 \bullet Strong coupling at low energy \rightarrow non-perturbative

• Quarks are **confined** into color-neutral (color singlet) **bound-states** (hadrons):

qqq baryons: proton & neutron (ordinary matter), ...

qq mesons: pion (lightest), kaon, rho, ...

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ◆ ◇ ◇ ◇

Exotics: glueballs, tetraquarks $qq\bar{q}\bar{q}$, pentaquarks $qqqq\bar{q}$, etc...

In principle, all calculable by Lattice QCD simulations

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

Example: hadron masses

BMW collaboration arXiv:0906.3599 \rightarrow Science

PACS-CS collaboration arXiv:0807.1661

Follow-up: neutron-proton mass diff.

arXiv:1406.4088 \rightarrow Science

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

hard-core + pion exchange?

Scope of lattice QCD simulations: Physics of color singlets

* "One-body" physics: confinement hadron masses form factors, etc..

** "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al

*** Many-[composite]-body physics: nuclear matter phase diagram vs (temperature T, density $\leftrightarrow \mu_B$)

・ロ・・中国・・ 中国・ ・ 日・ シュマ

Motivation

What happens to matter when it is heated and/or compressed?

Water changes its state when heated or compressed

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● のへぐ

What happens to quarks and gluons when heated or compressed?

The wonderland phase diagram of QCD from Wikipedia

Caveat: everything in red is a conjecture

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Heavy-ion collisions

Knobs to turn:

- atomic number of ions
- collision energy \sqrt{s}

So far, no sign of QCD critical point (esp. RHIC beam energy scan)

"critical opalescence" ?

Finite μ : what is known?

Minimal, possible phase diagram

The first Monte Carlo experiment (1777)

Probability of intersection: $\frac{2}{\pi}$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

The extraordinary efficiency of Monte Carlo

Typical:
$$Z = \sum_{\text{states}} \exp[-S(\text{state})]; \langle W \rangle = \frac{1}{Z} \sum_{\text{states}} W(\text{state}) \exp[-S(\text{state})]$$

Number of states $\sim \exp(\text{volume } V)$

Monte Carlo: approximate Z by random subset of n states

Law of large numbers \rightarrow error $\sim n^{-1/2} \forall V$

How to sample
$$Z = \sum_{\text{states}} \exp[-S(\text{state})]$$
?

- Random sampling: Pick states with *uniform* prob., give them weight exp(-S)- Importance sampling: Pick states with prob. exp(-S), give them *uniform* weight Metropolis et al, 1953

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Monte Carlo: no pain, no gain...

Monte Carlo highly efficient: *importance sampling* $Prob(conf) \propto exp[-S(conf)]$

- But all low-hanging fruits have been picked by now
- Further progress requires tackling the "sign problem":

 $\exists \text{ conf s.t. "Boltzmann weight" exp}[-S(\text{conf})] \notin \mathbb{R}_{\geq 0}$

No probabilistic interpretation — Monte Carlo impossible??

- Examples:
- real-time quantum evolution:

weight in path integral $\propto \exp(-\frac{i}{\hbar}Ht) \longrightarrow$ phase cancellations

- Hubbard model:

repulsion $Un_{\uparrow}n_{\downarrow} \rightarrow \det_{Hubbard-Stratonovich} \det_{\uparrow} \det_{\downarrow}$ complex except at half-filling (additional symmetry)

- QCD at non-zero density / chemical potential:

integrate out the fermions det $(\not D + \mu \gamma_0)^2$ ($N_f = 2$) complex unless $\mu = 0$ or pure imaginary (additional symmetry)

Lattice QCD: Euclidean path integral

space + imag. time \rightarrow 4*d* hypercubic grid:

$$Z = \int \mathcal{D}U\mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-S_{E}[\{U,\bar{\psi},\psi\}]}$$

• Discretized action S_E :

•
$$\psi(x) \cup \psi(x) \psi(x + \hat{\mu}) + h.c.,$$

• $\psi(x) \cup \psi(x + \hat{\mu}) + h.c.,$
• $\psi(y) \psi$
• $\psi(y)$

• Monte Carlo: with Grassmann variables $\psi(x)\psi(y) = -\psi(y)\psi(x)$?? Integrate out analytically (Gaussian) \rightarrow determinant *non-local*

 $\operatorname{Prob}(\operatorname{config}\{U\}) \propto \operatorname{det}^2 \mathcal{D}(\{U\}) e^{+\beta \sum_P \operatorname{ReTr} U_P}$ real non-negative when $\mu = 0$

Sampling oscillatory integrands

"Every x is important" \leftrightarrow How to sample?

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$\langle W \rangle \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$$

Computational complexity of the sign pb

• How to study: $Z_{\rho} \equiv \int dx \ \rho(x), \ \rho(x) \in \mathbf{R}$, with $\rho(x)$ sometimes negative ?

Reweighting: sample with $|\rho(x)|$, and "put the sign in the observable":

$$\langle W \rangle \equiv \frac{\int dx \ W(x)\rho(x)}{\int dx \ \rho(x)} = \frac{\int dx \ [W(x)\operatorname{sign}(\rho(x))] \ |\rho(x)|}{\int dx \ \operatorname{sign}(\rho(x)) \ |\rho(x)|} = \left| \frac{\langle W\operatorname{sign}(\rho) \rangle_{|\rho|}}{\langle \operatorname{sign}(\rho) \rangle_{|\rho|}} \right|$$

•
$$\langle \operatorname{sign}(\rho) \rangle_{|\rho|} = \frac{\int dx \, \operatorname{sign}(\rho(x))|\rho(x)|}{\int dx \, |\rho(x)|} = \boxed{\frac{Z_{\rho}}{Z_{|\rho|}}} = \exp(-\frac{V}{T} \Delta f(\mu^2, T)), \text{ exponentially small}$$

diff. free energy dens.

Each meas. of sign(ρ) gives value $\pm 1 \Longrightarrow$ statistical error $\approx \frac{1}{\sqrt{\# \text{ meas.}}}$

Constant relative accuracy \implies need statistics $\propto \exp(+2\frac{V}{T}\Delta f)$

Large V, low T inaccessible: signal/noise ratio degrades exponentially

"Figure of merit" Δf : measures severity of sign pb.

The CPU effort grows exponentially with L^3/T

CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of 10...

Frogs and birds

- Frogs: *acknowledge* the sign problem
 - explore region of small $\frac{\mu}{T}$ where sign pb is mild enough
 - find tricks to enlarge this region

Taylor expansion, imaginary μ , strong coupling expansion,...

- Birds: *solve* the sign pb
 - solve QCD ?

- find "QCD-ersatz" which can be made sign-pb free

Complex Langevin, Lefschetz thimble – fermion bags, QC_2D , isospin μ ,...

• *Think different*: build an analog QCD simulator with cold atoms

First frog steps: $\frac{\mu}{T} \lesssim 1$

Approximate $\langle W \rangle (\frac{\mu}{T})$ by truncated Taylor expansion: $\sum_{k=0}^{n} c_k(T) (\frac{\mu}{T})^k$

- Measure $c_k, k = 0, ..., n$ in a sign-pb-free $\mu = 0$ simulation
- Cheaper variant: fit $c_k, k = 0, ..., n$ to results of *imaginary* μ simulations

State of the art: Fodor et al, 1507.07510

Crafty frog: "diagrammatic" Monte Carlo

QCD with graphs: why and how?

Exploit feature of QCD: *fermions* (quarks) & *bosons* (gluons), integrated sequentially

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● のへ⊙

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi\rangle|e^{-\frac{\beta}{N}H}|\psi\rangle = e^{-\frac{\beta}{N}E_k}\delta_{\text{ex}} > 0$, λ are sign

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

・ロト・日本・エー・ エー・ うくの

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy:

choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

▲□▶ ▲□▶ ▲ ☲▶ ▲ ☲▶ ☲ ∽ � �

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum |\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ > りへで

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$ Reverse order: • integrate over gluons $\{U\}$ analytically

Monte Carlo over quark color singlets (hadrons)

• Caveat: must turn off 4-link coupling

in $\beta \sum_{P} \operatorname{ReTr} U_{P}$ by setting $\beta = 0$

 $\left(eta=rac{6}{g_0^2}=0$: strong-coupling limit \longleftrightarrow continuum limit $(eta o\infty)$

• Severity of sign pb. is representation dependent: Generically: $Z = \text{Tr}e^{-\beta H} = \text{Tr}\left[e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)e^{-\frac{\beta}{N}H}\left(\sum|\psi\rangle\langle\psi|\right)\cdots\right]$ Any complete set $\{|\psi\rangle\}$ will do

If $\{|\psi\rangle\}$ form an eigenbasis of H, then $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_I\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kI} \ge 0 \rightarrow \text{no sign pb}$

• Strategy: choose $\{|\psi\rangle\}$ "close" to physical eigenstates of H

QCD physical states are color singlets \rightarrow Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically $\rightarrow \det(\{U\})$ • Monte Carlo over gluon fields $\{U\}$ Reverse order: • integrate over gluons $\{U\}$ analytically

Monte Carlo over quark color singlets (hadrons)

$$Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x} U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$$

Product of 1-link integrals performed analytically

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual' degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols (• $\bar{\psi}\psi$, meson hop) or a baryon loop Undate with worm algorith

Update with worm algorithm: "diagrammatic" Monte Carlo

3

 $\checkmark Q (~$

Strong coupling limit at finite density (staggered quarks) Chandrasekharan, Wenger, PdF, Unger, Wolff, ...

• Integrate over U's, then over quarks: exact rewriting of $Z(\beta = 0)$

New, discrete "dual" degrees of freedom: meson & baryon worldlines

Constraint at every site: 3 blue symbols (• $\bar{\psi}\psi$, meson hop) or a baryon loop

The dense (crystalline) phase: 1 baryon per site; no space left $\rightarrow \langle \bar{\psi}\psi \rangle = 0$

Ξ.

 $\checkmark Q (~$

Update with worm algorithm: "diagrammatic" Monte Carlo

Results – Crude nuclear matter: spectroscopy w/Fromm

Can compare masses of differently shaped "isotopes"

- $am(A) \sim a\mu_B^{\text{crit}}A + (36\pi)^{1/3}\sigma a^2 A^{2/3}$, ie. (bulk + surface tension) Bethe-Weizsäcker parameter-free (μ_B^{crit} and σ measured separately)
- "Magic numbers" with increased stability: A = 4, 8, 12 (reduced area)

$\beta >$ 0: lattice QCD with graphs

 $\beta > 0$: 4-link plaquette coupling prevents analytic link integration

decouple with Hubbard-Stratonovitch auxiliary variables Q and R

Monomers, dimers, baryons, quarks, all in the background of $\{Q, R\}$

▲ E ▶ ▲ E ▶ E • • ○ Q @

Diagrammatic Monte Carlo for 2d QED

- Gaussian heatbath to update $\{Q, R\}$
- "Meson" worm to update monomers and dimers
- "Electron" worm to update electron loops and dimers generalized from Adams & Chandrasekharan

The road ahead w/Helvio Vairinhos

- Simulate the 1-link and 0-link YM gauge action Done! 1409.8442
- Simulate U(1) gauge + fermions (no chemical potential) at eta > 0

• $U(1) \rightarrow SU(3)$

• $\mu \neq 0$ 2nd order T [lat. units] Т tricritica 1.6 quark-gluon plasma (QGP) din univ 1.4 heavy-ion collisions 1.2 170 1 MeV 1st order 0.8 0.6 0.4 hadronic 0.2 nuclear CEP non-CFL quark (confined) phase nuclear matter CFL liquid μ_B [lat. units] (neutron stars) vacuum μ 310 MeV

Caveat: • when $\beta > 0$, the complex auxiliary fields Q & R re-introduce a sign pb In physical terms: color neutrality is only true for distances $\gtrsim 1/\Lambda_{\rm QCD}$

 \rightarrow how large can we take β before the sign pb becomes unmanageable?

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• staggered fermions $\rightarrow N_f = 4$ quark flavors

Conclusions

• Tolstoi:

"Happy families are all alike; each unhappy family is unhappy in its own way"

"happy" \longrightarrow sign-pb free

• Finite-density QCD: fermions AND bosons

still a long way to go...

Thank you for your attention

Thank you for your attention

Backup

Sign pb

Overlap pb

More difficulties: the overlap problem

• Further danger: insufficient overlap between sampled and reweighted ensembles

Very large weight carried by very rarely sampled states \rightarrow WRONG estimates in reweighted ensemble for finite statistics

• Example: sample
$$\exp(-\frac{x^2}{2})$$
, reweight to $\exp(-\frac{(x-x_0)^2}{2}) \rightarrow \langle x \rangle = x_0$?

Insufficient overlap ($x_0 = 5$)

Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

< ⊒ >

SQ (~

3

Solution: Need stats $\propto \exp(\Delta S)$

From QED to QCD: essential facts

	QED	QCD
Bosons:	photon	8 gluons
Fermions:	electron	quarks (up, down, strange,)
	Electric charge	Color charge

Confinement: quarks are bound in color-neutral hadrons: qqq baryons & $q\bar{q}$ mesons

- Baryons qqq: protons, neutrons, i.e. ordinary matter
- Mesons $q\bar{q}$: pions (lightest) and others

Nuclear interactions: residual interactions between color-neutral protons/neutrons \rightarrow Nuclear physics from first principles

Old birds: complex Langevin revival Seiler, Stamatescu, Aarts, Sexty,...

• Real action S: Langevin evolution in Monte-Carlo time τ Parisi-Wu 80's $\frac{\partial \phi}{\partial \tau} = -\frac{\delta S[\phi]}{\delta \phi} + \eta$, ie. drift force + noise Can prove: $\langle W[\phi] \rangle_{\tau} = \frac{1}{7} \int \mathcal{D}\phi \exp(-S[\phi]) W[\phi]$

• Complex action S? Drift force complex \rightarrow complexify field $(\phi^R + i\phi^I)$ and simulate as before With luck: $\langle W \left[\phi^R + i\phi^I \right] \rangle_{\tau} = \frac{1}{Z} \int \mathcal{D}\phi \exp(-S \left[\phi \right]) W \left[\phi \right]$

Idea: trade oscillatory weight on real axis for positive weight in complex plane

< □

< ∃ >

 $\mathbf{A} \equiv \mathbf{A}$

 $\checkmark Q (~$

• Gaussian example: $Z(\lambda) = \int dx \exp(-x^{2} + i\lambda x)$ Complexify: $\frac{d}{d\tau}(x + iy) = -2(x + iy) + i\lambda + \eta$ For any observable W, $\langle W(x + iy) \rangle_{\tau} = \langle W(x) \rangle_{Z}$ Oscillatory weight(x) Positive weight(x,y)
Oscillatory weight(x) Positive weight(x)

Difficulties with complex Langevin

- Infinite set of necessary conditions to prove correctness
- Simplified: need bounded or exponentially decreasing distribution of $Im(\phi)$
- Gauge invariance \implies flat directions to $\pm i\infty \qquad \leftarrow$ "gauge cooling"?
- Convergence lost when noise is made complex
- Action is analytically continued: $S = S_{YM} + \log \det D$ how to deal with cut in log det \mathcal{D} ? with log singularity when det $\mathcal{D} = 0$??

Caveat:

Complex Langevin gives wrong answer when system is too disordered, also when there is no sign pb! 3d XY model, Aarts & James, 1005.3468

Robustness?

Importance of classical stationary points + fluctuations Guralnik & Pehlevan

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

New bird: Lefschetz thimble

• Same starting point as complex Langevin:

analytic continuation in complexified space

• Follow steepest ascent from action minima \rightarrow constant $\operatorname{Im}(S)$

The weights of all configurations along a thimble have [almost] the same phase

• Problems: - find the many (?) thimbles

- control their phase cancellations
- deal with non-analyticities of ${\boldsymbol{S}}$

Under construction

Severity of sign problem? Monitor $\Delta f = -\frac{1}{V} \log \langle \text{sign} \rangle$

• $\langle \text{sign} \rangle = \frac{Z}{Z_{||}} \sim \exp(-\frac{V}{T}\Delta f(\mu^2))$ as expected

• Determinant method $\rightarrow \Delta f \sim \mathcal{O}(1)$. Here, Gain $\mathcal{O}(10^4)$ in the exponent!

- heuristic argument correct: color singlets closer to eigenbasis
- negative sign? product of *local* neg. signs caused by spatial baryon hopping:
 - no baryon \rightarrow no sign pb (no silver blaze pb.)
 - \bullet saturated with baryons \rightarrow no sign pb

Results – Phase diagram and Polyakov loop $(m_q = 0)$ w/Unger, Langelage, Philipsen

• Chiral phase transition $(m_q = 0)$: 2nd \rightarrow 1rst order as μ increases: *tricritical* point

- Finite- N_t corrections \rightarrow continuous-time
- Baryon density jumps at 1rst-order transition
- Polyakov loop changes at chiral transition

Moving from $\beta\!=\!0$ toward the continuum limit $\beta\to\!+\infty$

- $\beta = 0$: gauge links U are not directly coupled to each other: $Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x} U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$ Product of 1-link integrals performed analytically
- $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformations

Moving from $\beta \!=\! 0$ toward the continuum limit $\beta \to \! +\infty$

Simple: $\mathcal{O}(\beta)$ approximation

Introduce auxiliary plaquette variables q_P = {0,1}: exp(^β/_{N_c}ReTr U_P) = ∑_{q_P={0,1}} (δ_{q_P,0} + δ<sub>q_P,1^β/_{N_c}ReTrU_P) + O(β²)
Sample {q_P} → exact at O(β) 1406.4397 → PRL
</sub>

More ambitious: arbitrary β

- $\beta = 0$: gauge links U are not directly coupled to each other: $Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x}U_{x,\nu}\psi_{x+\hat{\nu}} - h.c.\}} \right)$ Product of 1-link integrals performed analytically
- $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformations

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P\right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dUUe^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by gluon exchange

• $\mu = 0$: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P \right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dUUe^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by gluon exchange

- $\mu = 0$: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$
- $\mu \neq 0$: phase boundary more "rectangular" with TCP at corner

Toward the continuum limit at $\mathcal{O}(\beta)$ 1406.4397 \rightarrow PRL

• Introduce auxiliary plaquette variables $q_P = \{0, 1\}$:

$$\exp(\frac{\beta}{N_c}\operatorname{ReTr} U_P) = \sum_{q_P = \{0,1\}} \left(\delta_{q_P,0} + \delta_{q_P,1} \frac{\beta}{N_c} \operatorname{ReTr} U_P \right) + \mathcal{O}(\beta^2)$$

- Sample $\{q_P\} \rightarrow \text{exact at } \mathcal{O}(\beta)$
- $q_P = 1 \rightarrow$ new color-singlet hopping terms qqg, $\bar{q}g$, from $\int dU U e^{-(\bar{\psi}U\psi h.c.)}$:
 - hadrons acquire *structure*
 - hadron interaction by gluon exchange

• $\mu = 0$: crosscheck with HMC ok; linear (aT_c) extrapolation good up to $\beta \sim 1$

- $\mu \neq 0$: phase boundary more "rectangular" with TCP at corner
 - liquid-gas CEP splits and moves down ?

Going beyond $\mathcal{O}(\beta)$

• $\beta = 0$: gauge links U are not directly coupled to each other: $Z(\beta = 0) = \int \prod_{x} d\bar{\psi} d\psi \quad \prod_{x,\nu} \left(\int dU_{x,\nu} e^{-\{\bar{\psi}_{x} U_{x,\nu} \psi_{x+\hat{\nu}} - h.c.\}} \right)$ Product of 1-link integrals performed analytically

• $\beta \neq 0$: Plaquette 4-link coupling prevents analytic integration of gauge links

Decouple gauge links by Hubbard-Stratonovich transformation:

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

• 4
$$\rightarrow$$
 2-link action:

$$Y=(U_1U_2+U_4^\dagger U_3^\dagger)$$
, $X=Q$

$$S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● のへぐ

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

• 4
$$\rightarrow$$
 2-link action:

$$Y = (U_1 U_2 + U_4^{\dagger} U_3^{\dagger}), X = Q$$

$$S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$$

•
$$2 \rightarrow 1$$
-link action:

$$Y=(U_1+QU_2^\dagger)$$
, $X=R_1$

$$S_{1-\text{link}} = \text{ReTr} \longrightarrow \Sigma(\xrightarrow{R_1} + \underbrace{r}_{\frac{1}{2}})^{+}$$

• Hubbard-Stratonovich: $\forall Y \in \mathbb{C}^{N \times N}$, $e^{\operatorname{Tr} Y^{\dagger} Y} = \mathcal{N} \int dX \ e^{\operatorname{Tr} (X^{\dagger} Y + XY^{\dagger})}$ where $X \in \mathbb{C}^{N \times N}$ with Gaussian measure $dX \propto \prod_{ij} dx_{ij} dx_{ij}^* e^{-|x_{ij}|^2}$

• 4
$$\rightarrow$$
 2-link action:
 $Y = (U_1 U_2 + U_4^{\dagger} U_3^{\dagger}), X = Q$

$$S_{2-\text{link}} = \text{ReTr } Q^{\dagger} (U_1 U_2 + U_4^{\dagger} U_3^{\dagger})$$

•
$$2 \rightarrow 1$$
-link action:

$$Y=(U_1+QU_2^\dagger)$$
, $X=R_1$

$$S_{1-\text{link}} = \text{ReTr} \longrightarrow \Sigma(\begin{array}{c} R_1 \\ + \end{array} \\ R_2 \\ Q \end{array})^{+}$$

• $1 \rightarrow 0$ -link action: integrate out U analytically – also with fermion sources

 U_2

 U_2

U

 U_1

U₃

 U_1

 U_4

U

QCD with graphs

 $\beta > 0 \rightarrow$ Monomers, dimers, baryons, *quarks*, all in the background of $\{Q, R\}$

Start with a simpler case: 2*d* QED

 $\beta > 0 \rightarrow$ Monomers, dimers, electron loops, in the background of $\{Q, R\}$

Start with a simpler case: 2d QED

• Extend 0-link representation of 2d U(1) with staggered fermions: $Z(\beta, m) = \int \left[\prod_{x} d\chi_{x} d\bar{\chi}_{x} e^{2am\bar{\psi}_{x}\psi_{x}}\right] \int \mathcal{G}_{\beta}[Q, R] \prod_{x,\mu} \int dU e^{\operatorname{Re}\left(\left(\beta J_{x\mu}^{\dagger} + 2\eta_{x\mu}\psi_{x}\psi_{x+\hat{\mu}}\right)^{\dagger}U\right)\right)$ $= \int \mathcal{G}_{\beta}[Q, R] \prod_{x,\mu} I_{0}(\beta|J_{x\mu}|) \sum_{\{n,k,C\}} \left(\prod_{x} (2am)^{n_{x}}\right) \left(\sigma_{F}(C) \prod_{i=1}^{\#C} 2\operatorname{Re}(W(C))\right)$

i.e. monomers, dimers and electron loops

• weight of electron loop is *global* and can be *negative*

$$W(C) = \prod_{(x,\mu)\in C} \widetilde{U}_{x\mu}$$

$$\widetilde{U}_{x\mu} = \frac{I_1(\beta|J_{x\mu}|)}{I_0(\beta|J_{x\mu}|)} \frac{J_{x\mu}}{|J_{x\mu}|}$$

Start with a simpler case: 2d QED

• Diagrammatic (0-link) representation of 2d U(1) with staggered fermions:

$$Z(\beta,m) = \int \mathcal{G}_{\beta}[Q,R] \prod_{x,\mu} I_0(\beta|J_{x\mu}|) \sum_{\{n,k,C\}} \left(\prod_{x} (2am)^{n_x}\right) \left(\sigma_F(C) \prod_{i=1}^{\#C} 2\operatorname{Re}(W(C))\right)$$

i.e. monomers, dimers (weight 1) and electron loops

• Careful: weight of electron loop is *global* and can be *negative*

$$\sigma_F(C) = \pm 1$$
 depends on loop geometry

$$W(C) = \prod_{(x,\mu)\in C} \widetilde{U}_{x\mu}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● のへぐ

Monte Carlo

- Gaussian heatbath to update $\{Q, R\}$
- "Meson" worm to update monomers and dimers
- "Electron" worm to update electron loops and dimers generalized from Adams & Chandrasekharan

Sign problems

• The sign $\sigma(C)$ has a bosonic $\sigma_B(C)$ and a fermionic $\sigma_F(C)$ contribution:

$$\sigma(C) = \operatorname{sign}\left(\prod_{i=1}^{\#C} 2\operatorname{Re}(W(C_i))\right) \times \sigma_F(C)$$

$$\underbrace{\sigma_B(C)}$$

Valuable crosschecks

Alternative at $T \approx 0$: $\mu = 0 + baryonic sources/sinks$

• Mitigated with variational baryon ops. $\rightarrow m_{eff}$ plateau for 3 or 4 baryons ? Savage et al., 1004.2935 At least 2 baryons \rightarrow nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

• Beautiful results with up to $12 \rightarrow 72$ *pions or kaons* Detmold et al., eg. 0803.2728 (cf. isospin- μ : no sign pb.)

Liquid-gas endpoint moves to lower temperatures as β increases

Jump at $\beta = 0$ becomes crossover as β grows

◆□▶ ◆母▶ ▲目▶ ▲目▶ ▲□▶

Monte Carlo algorithms

Bosonic updates:

- 1. Gaussian heatbath for the auxiliary fields (Q, R) + HS transformations (with the help of an auxiliary U(1) field)
- 2. Metropolis update to correct for electron loop weights

$$\mathcal{G}_{\beta}[Q,R]\prod_{x,\mu}I_0(\beta|J_{x\mu}|)\underbrace{\prod_{i=1}^{\#C}2\operatorname{Re}(W(C_i))}_{\text{Heatbath (local)}}$$

► Fermionic updates:

1. "Meson" worm algorithm: Updates the monomer-dimer cover, with target distribution:

$$w_m = \prod_x (2am)^{n_x} \prod_{x,\mu} 1$$

2. Electron worm algorithm: Transforms <u>electron loops</u> into dimers and vice versa, with target distribution:

$$w_e = \prod_{x,\mu} \prod_{i=1}^{\#C} |2\operatorname{Re}(W(C_i))| = \prod_{x,\mu} \prod_{i=1}^{\infty} \left(\frac{I_1(\beta|J_{x\mu}|)}{I_0(\beta|J_{x\mu}|)} \right)^{b_{x\mu}} \underbrace{\prod_{i=1}^{\#C} |2\cos(\varphi(C_i))|}_{\operatorname{Worm (local)}}$$

Adams & Chandrasekharan (2003) Chandrasekharan & Jiang (2006)

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

• Unavoidable as soon as one integrates over fermions (hint?)

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

$$\det \mathcal{D}\left(\mu
ight) = \det^{*} \mathcal{D}\left(-\mu^{*}
ight)$$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

$$\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\overline{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$$

 $\mu \neq 0 \Rightarrow F_q \neq F_{\overline{q}} \Rightarrow \text{Im}d\varpi \neq 0$

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu\gamma_0)$ $\gamma_5(i\not p + m + \mu\gamma_0)\gamma_5 = (-i\not p + m - \mu\gamma_0) = (i\not p + m - \mu^*\gamma_0)^{\dagger}$

$$\det \mathcal{D}\left(\mu\right) = \det^* \mathcal{D}\left(-\mu^*\right)$$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

$$\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\overline{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$$

 $\mu \neq 0 \Rightarrow F_q \neq F_{\overline{q}} \Rightarrow \text{Im}d\varpi \neq 0$

• Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ● ● の � @

• quarks anti-commute \rightarrow integrate analytically: $\det(\mathcal{D}(U) + m + \mu \gamma_0)$ $\gamma_5(i\not p + m + \mu \gamma_0)\gamma_5 = (-i\not p + m - \mu \gamma_0) = (i\not p + m - \mu^* \gamma_0)^{\dagger}$

$$\det \mathcal{D}\left(\mu\right) = \det^* \mathcal{D}\left(-\mu^*\right)$$

det real only if $\mu = 0$ (or $i\mu_i$), otherwise can/will be complex

- Unavoidable as soon as one integrates over fermions (hint?)
- Measure $d\varpi \sim \det D$ must be complex to get correct physics:

$$\langle \text{Tr Polyakov} \rangle = \exp(-\frac{1}{T}F_{\mathbf{q}}) = \int \text{Re Pol} \times \text{Re } d\varpi - \text{Im Pol} \times \text{Im } d\varpi$$

$$\langle \text{Tr Polyakov}^* \rangle = \exp(-\frac{1}{T}F_{\bar{\mathbf{q}}}) = \int \text{Re Pol} \times \text{Re } d\varpi + \text{Im Pol} \times \text{Im } d\varpi$$

 $\mu \neq 0 \Rightarrow F_q \neq F_{\bar{q}} \Rightarrow \text{Im}d\varpi \neq 0$

<□ > <⊡ > <⊡ > < ⊑ >

• Origin: $\mu \neq 0$ breaks charge conj. symm., ie. usually complex conj.

Complex determinant \implies no probabilistic interpretation \longrightarrow Monte Carlo ??

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign =
$$\frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for $N_f = 2$)

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud̄ charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign
$$= \frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for $N_f = 2$)

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽੧<~

 QCD: sample with |Re(det(μ)^{N_f})| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|^{N_f}, i.e. "phase quenched" |det(μ)|^{N_f} = det(+μ)^{N_f/2} det(-μ)^{N_f/2}, ie. isospin chemical potential μ_u = -μ_d couples to ud charged pions ⇒ Bose condensation of π⁺ when |μ| > μ_{crit}(T)

• av. sign =
$$\frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for $N_f = 2$)

