Investigation of the reduced tracker dimensions option

Rosa Simoniello

Introduction

- From the "CLICdp detector optimisation meeting" on Aug 9th
 - Clear preference for the 40L ECAL
 - 44 mm extra space needed
- 2 options:
 - Push everything out

results in this talk

Fast Simulation, LDT

- For the tracker, single point resolution in $R\phi = 7 \mu m$
- Material budget numbers coherent with full simulation

- R_{max} = 1486.5 mm, z_{max} = 2230.6 mm
- Mostly equispaced layers → layer position optimised to reduce missed hits in gaps (i.e.: due to the support tube)

Reduced tracker layout

- Overall size reduced: R_{max} = 1442.6 mm, z_{max} = 2190 mm
- Move only "last" layers: OTB3, OTD4, ITD7
 - ightarrow layer position not re-optimised

Reduced and optimised tracker layout

- Overall size reduced: R_{max} = 1442.6 mm, z_{max} = 2190 mm
- Move only "last" layers: OTB3, OTD4, ITD7
 Nove only "last" layers: orbitistic on the second sec
 - \rightarrow layer position re-optimised in order to reduce gaps

How the models actually look like

All the numbers – Preliminary

By Szymon and Wolfgang

Barrel R [mm]

	current	reduced	reduc + opt
ITB1	126.7	126.7	126.6
ITB2	340.1	340.1	342.6
ITB3	553.5	553.5	553.5
OTB1	818.5	818.5	774.6
OTB2	1152.5	1152.5	1108.6
OTB3	1486.5	1442.6	1442.6

All the numbers – Preliminary

Disk z [mm], R_{in} [mm], R_{out} [mm]

By Szymon and Wolfgang

	Current		Reduced			Reduced + opt			
	Z	R _{in}	R _{out}	z	R _{in}	R _{out}	z	R _{in}	R _{out}
ITD1	523.6	71.6	403.5	523.6	71.6	403.5	523.6	71.6	403.5
ITD2	815.1	97.5	550.3	815.1	97.5	550.3	801.3	97.5	550.3
ITD3	1092.6	129.5	552.1	1092.6	129.5	552.1	1079.0	129.5	552.1
ITD4	1377.1	161.5	538.9	1377.1	161.5	538.9	1356.8	161.5	538.9
ITD5	1661.6	193.6	540.7	1661.6	193.6	540.7	1634.5	193.6	540.7
ITD6	1946.1	226.7	543.6	1946.1	226.7	543.6	1912.2	226.7	543.6
ITD7	2230.6	250.0	551.8	2190.0	250.0	551.8	2190.0	250.0	551.8
OTD1	1310.2	617.5	1430.2	1310.2	617.5	1386.2	1310.2	617.5	1386.2
OTD2	1616.8	617.5	1430.2	1616.8	617.5	1386.2	1604.0	617.5	1386.2
OTD3	1923.4	617.5	1430.2	1923.4	617.5	1386.2	1897.0	617.5	1386.2
OTD4	2230.0	617.5	1430.2	2190.0	617.5	1386.2	2190.0	617.5	1386.2

Number of hits

- Single μ , p = 500 GeV
- Very similar number of hits for all the 3 layouts

Single μ, theta = 90 deg, p from 10 GeV to 500 GeV

	10 GeV	20 GeV	50 GeV	100 GeV	200 GeV	500 GeV
current	0.00174	0.00101	0.00043	0.000225	0.000117	0.000051
reduced	0.00176	0.00103	0.00044	0.000231	0.000120	0.000053
reduc + opt	0.00177	0.00104	0.00045	0.000233	0.000122	0.000054
% diff reduc	-1.49	-2.03	-2.34	-2.51	-2.79	-3.36
% diff r+o	-2.02	-2.72	-3.16	-3.47	-4.00	-4.75

- As expected reducing the last barrel layer, worsening of the momentum resolution performance
 - $\Box \quad \Delta R/R \simeq 3\%$
- Worsening increases with momentum because tracks are straighter → hit at large R helps in the curvature computation
- Performance with re-optimised layout probably worse because also other layers are at smaller R

Performance $\Delta p_T / p_T^2$

• Single μ , p = 500 GeV, theta from 30 deg to 90 deg

	30 deg	40 deg	50 deg	60 deg	70 deg	80 deg	90 deg
current	0.001564	0.000184	0.000074	0.000062	0.000056	0.000052	0.000051
reduced	0.001591	0.000184	0.000076	0.000064	0.000058	0.000054	0.000053
red + opt	0.001593	0.000193	0.000077	0.000065	0.000058	0.000055	0.000054
% diff red	-1.77	0.00	-3.06	-3.19	-3.27	-3.33	-3.36
% diff r+o	-1.85	-4.73	-4.47	-4.61	-4.68	-4.73	-4.75

 As expected reducing the overall tracker dimension (R and z), worsening of the momentum resolution performance

 $\Box \quad \Delta R/R \simeq 3\%, \, \Delta z/z \simeq 1.7\%$

 Worsening increases in the central region where the R reduction has been larger

Performance $\Delta p_T / p_T^2$

• Single μ , p = 10 GeV, theta from 30 deg to 90 deg

	30 deg	40 deg	50 deg	60 deg	70 deg	80 deg	90 deg
current	0.003488	0.00269	0.00232	0.00201	0.00185	0.00176	0.00174
reduced	0.003504	0.00269	0.00228	0.00203	0.00188	0.00179	0.00176
red + opt	0.003509	0.00270	0.00229	0.00204	0.00189	0.00180	0.00177
% diff red	-0.45	0.00	1.72	-1.27	-1.39	-1.47	-1.49
% diff r+o	-0.61	-0.08	1.30	-1.75	-1.90	-1.99	-2.02

- General worsening of the momentum resolution performance as expected except for theta = 50 deg
- Same layers (both sensitive and not) crossed at theta = 50 deg and theta = 60 deg → not sure what's going on at theta = 50 deg

Full simulation - Discussion

 If we reduce radius of outer tracker disks how the modular structure of the petal would change? (Similar structure for inner tracker disks)

Conclusion

- If we decide to reduce the overall tracker dimensions:
 44 mm in R, 40 mm in z
 there would be a small worsening in the p_T resolution performance:
 - Barrel: from ~2% (low p tracks) to ~5% (high p tracks)
 - Disks: from ~0.5% (low p tracks) to ~2% (high p tracks)
- The worsening is coherent with the expectations: $\Delta R/R \sim 3\%$, $\Delta z/z \sim 1.7\%$

Material budget

Preliminary Estimation of Material Budget

Support Structure

.6

