

Q4 update

M. Segreti, H. Felice, J.M. Rifflet, E. Todesco

- Magnetic design optimized at the nominal current in the two apertures
- Harmonics are calculated at the reference radius (2/3 of the aperture radius)
- Magnet integrated strength = 440 T
- Margin on the load line = at least 20 %
- Cable used= MQM insulated with its classical insulation (0.08 mm thick after curing & collaring). Main characteristics of MQM cable are listed below

Cable characteristics	Width (mm) N	Min thick (mm) Max thick (mm)		Nb strands	Transp (mm)	Degrad (%)	Fil
	8.8	0.78	0.91	36	66	5	NbTi
Strand characteristics	Diam (mm)	Cu/sc	RRR	Tr (K)	Br (T)	Jc @ BrTr	dJc/dB
	0.48	1.75	80	1.9	5	2872	600

MAGNETIC DESIGN USING MQM CABLE

2 layers of MQM cable Inner blocks: 17 + 8 turns Outer blocks: 16 +10 turns

Aperture = 90 mm (as before)

Integrated gradient = 440 TMagnetic length = 3.67 mNominal gradient = 120 T/m

```
Loadline margin = 20 %
Temperature = 1.9 K
Nominal current = 4590 A
Stored energy = 0.81 MJ
Differential inductance = 2 × 37.5 mH
```


MAGNETIC DESIGN USING MQM CABLE

Calculation with collars (assuming a relative permeability of 1.0025)

Re-optimized crosssection to minimize impact of collars on b6

MAGNETIC DESIGN USING MQM CABLE

|B| (T)

Calculation with collars (assuming a relative permeability of 1.0025)

At 4590 A, collars increase the peak field on conductor by about 0.12 T

With collars +	iron yoke + she	ell				
Blocks	Ncab	R (mm)	φ (Deg)	α (Deg)		
1	17	45	0.1590	0.0000		2 4
2	8	45	24.3201	21.7291	Radius 🖌 🛔	
3	16	54.46	0.1320	0.0000	Phi	
4	10	54.46	18.6833	22.6004		

0 % unbalance	d regime							
Current	Gradient							
(A)	(T/m)	b3	b4	b5	b6	b10	b14	b18
4590	120	-0.05	0.17	0.02	0.00	0.00	1.12	-0.66
Current	Gradient							
(A)	(T/m)	b3	b4	b5	b6	b10	b14	b18
4590	120	0.05	0.17	-0.02	0.00	0.00	1.12	-0.66

WP3 - Q4 update - 25 November 2015 | P 7

Evolution of normal relative multipoles with the current (cable eddy currents taken into account)

FIELD QUALITY TRANSIENT FROM 250 A TO 6 KA

6

FIELD QUALITY TRANSIENT FROM 50 A TO 6 KA

Unbalanced regime

20 % unbalanc	ed regime							
Current	Gradient							
(A)	(T/m)	b3	b4	b5	b6	b10	b14	b18
4590	120	-0.57	0.09	-0.04	-0.01	0.00	1.12	-0.66
Current	Gradient							
(A)	(T/m)	b3	b4	b5	b6	b10	b14	b18
2672	00	0.00	0 10	0.01	0 5 2	0.00	1 1 2	0.66

50 % unbalanc	ed regime								
Current	Gradient								
(A)	(T/m)	b3	b4	b5	b6	b10	b14	b18	
4590	120	-0.55	0.11	-0.03	0.00	0.00	1.12	-0.66	
Current	Gradient								
(A)	(T/m)	b3	b4	b5	b6	b10	b14	b18	
2295	60	-0.36	0.32	-0.02	-0.70	0.01	1.12	-0.66	

MECHANICAL STUDY

WP3 - Q4 update - 25 November 2015 | P 10

Thermomechanical properties of materials

Materials	Temp.	Elastic	Yield	Ultimate	Integrated	
Componants		Modulus	Strength	Strength	Thermal Shrinkage	
	(K)	E (GPa)	(MPa)	(MPa)	α (mm/m)	
yus 130 S Nippon Steel	300	190	445	795		
Collars	2	210	1023	1595	2.4	
316L Stainless Steel	300	205	275	596		
Keys	2	210	666	1570	2.9	
Copper	300	136				
Angular wedges	2	136			3.3	
Kapton Foils	300	2.5				
inter-layer & inter-pole insulations	2	4			6.0	
insulated NbTi conductor blocks	300	5.6 *				
Coils with MQM cable	2	7.84 *			5.0 *	
* For MQM insulated conductor, it is assumed that: $E_{2K} = 1.4 \times E_{300K}$ and $\alpha = 5.0$ mm/m (see in red)						

Thanks to Julio for his data on MQM magnet!

20 % loss of pre-stress is assumed after collaring due to insulation creep

MECHANICAL STUDY

Azimuthal stress distribution in coil at each main step

Cez

MECHANICAL STUDY

Azimuthal displacement

Radial displacement

Displacement in coil due to magnetic forces

MECHANICAL STUDY

The self-standing collar solution as mechanical structure is validated

COIL ENDS

| P 15

Return end Lead end View of a 600 mm long model

WP3 - Q4 update - 25 November 2015

COIL ENDS

 Localization of the peak field (6.5 T i.e. only 1 % higher than in the straight part)

COIL ENDS

60.00 Return end Lead end **b**6 40.00 —b10 Normal relative multipoles (Units) 20.00 0.00 Integrated b6 has been -20.00 minimized -40.00 -60.00 -80.00 -100.00 0 -400 -300 -200 -100 100 200 Z (mm)

WP3 - Q4 update - 25 November 2015 | P 18

COST ESTIMATE FOR THE SHORT MODEL TEST AT CEA

 Ongoing effort with Jean-Marc Gheller and Denis Bouziat to establish a cost estimate of the test of the single aperture short model at CEA-Saclay

Mechanical

- Cost estimate based on the recovery/modification of existing components
 - Top plate
 - 6 kA current leads
 - Current leads insert
- Ongoing CAD modeling to assess the required effort to perform:
 - The modification of the top plate
 - The integration of the current leads
 - The addition of a safety valve
 - The addition of a central port for magnetic measurements (performed by CERN)
 - A flange ISO K DN100 is presently considered => to be discussed with CERN
- Limited space on the top plate requires some optimization

DAQ and Magnet Protection

Assessment of available equipment is ongoing

MAGNET IN CRYOSTAT

- 4.2 K cold box for the current leads
- Cryostat at 1.9 K (23 mbar)
- Pre-cooling obtained by LN₂ heat exchanger

N°	Description	Steering committee 04/09/2015	As of 25/11/2015 Starts in/ Completed in
2.1	Complete design of the single aperture magnet short model	July 2016	Aug 2015 /July 2016
2.2	Winding and polymerization of short coil 0	December 2016	Sept/Dec 2016
2.3	Completion of all coils (1 set + 2 spares in total?)	July 2017	Jan / April 2017 (~12 weeks)
2.4	Single aperture magnet short model assembly (instrumentation + collaring + yoking)	September 2017	March/June* 2017
2.5 ?	Assembly procedure end of cold mass (quad + correctors) Test of short model	December 2017	July / Oct 2017

*preliminary assumption

Q4 UPDATE

Thanks for your attention

WP3 - Q4 update - 25 November 2015