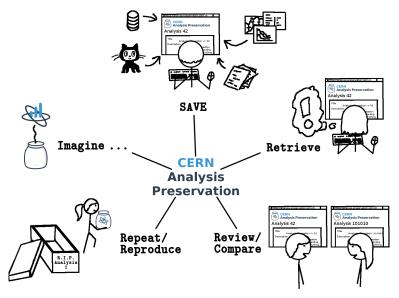


CERN Analysis Preservation Status Update

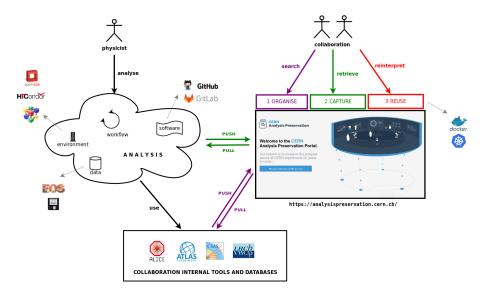
Tibor Šimko CERN IT

9th LHCb Computing Workshop · 15–19 May 2017

CERN Analysis Preservation


- A platform for preserving knowledge and assets of an individual physics analysis.
- Capturing the elements needed to understand and rerun an analysis even several years later:

🗸 data	workflow
✓ software	 context
 environment 	 documentation


- Advanced **search** for high-level physics information
- Applying standard collaboration access restrictions

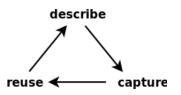
Developed by CERN IT and CERN SIS in close collaboration with LHC experiments

Use cases

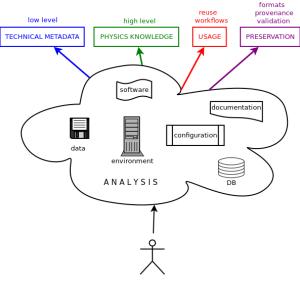
System overview

Three pillars

1 Describe


Knowledge modelling Analysis description

2 Capture


Push: deposit via API Pull: ingest via grabbing

3 Reuse

Runnable components Reinstantiate analyses on cloud

1. Describing an analysis

physicist

Knowledge representation

rare cross-discipline standards (W3C DCAT)

```
"primary_dataset": [
    {
        "@type": "dcat:Dataset",
        "title": "/Mu/Run2010B-Apr21ReReco-v1/AOD",
        "description": "Mu primary dataset in AOD format from RunB of 2010",
        "licence": "CCO waiver",
        "issued": "2011-04-26 11:32:43",
        "modified": "2011-05-02 21:22:30",
        [...]
```

domain-specific knowledge modelling

Demo: LHCb production info

E CERN Analysis Preservation	LHCb -	Search Q Ocreat	۵ 🔺 🕚
		LHCb Analysis 17/05/2017, 08:19:57	🖹 Save
A Basic Information 8 (3 reg)	PRODU	CTION INFORMATION	
O Analysis Name O Measurement O Proponents O Status		LISION DATA	1
Status Reviewers Review eGroup Working Group Keywords	COL	LISON DATA + Add New	* ×
DST selection 2		wokkeeping path E.g. sim://LHCbi/Collision12/Beam4000GeV-VeloClosed-MagDown/RealData/Reco14/Stripping20/900000000 (Full stream Auto	fill
Application O Platform Ever code 0 Exerce Application Production information 2		ccessing Pass	
Collision Data 0 Items MC Data 0 Items		RECONSTRUCTION SOFTWARE	
III Analysis Steps Tees		Name E.g. Brunel Reco Version E.g. 13	

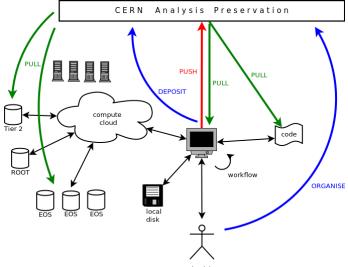
"Describe" pillar status

developed set of JSON schemas for LHC physics analyses

```
lhcb-v0.0.1.json
       [...]
      "dst_selection": {
         "properties": {
           "code": {
             "properties": {
               "lhcb code": {
                 "title": "Application",
                 "type": "string"
               },
               "platform": {
                 "title": "Platform",
                 "type": "string"
               }.
               "user code": {
                 "items": {
         [...]
```

ongoing tests with physicists studying feasibility

"Describe" pillar next steps

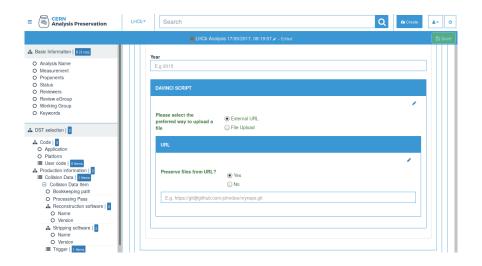

• wider testing on various types of LHCb physics analyses

- different working groups?
- attaching additional information of interest for reusable knowledge preservation
 - stripping conditions?
 - particle properties?
- support for schema migration
 - several schemas co-existing on a system
 - lhcb-v0.0.1.json \rightsquigarrow lhcb-v2.3.1.json

intelligent search across captured information to ease discovery

- enhanced faceted search
- query language to search for e.g. loose opposite sign muons and certain p_T and η cuts?

2. Capturing an analysis


physicist

Capturing analysis assets

- capturing datafiles from various sources:
 - local storage
 - institute network storage
 - WLCG Tier 2 site
 - via various protocols:
 - HTTP
 - XRootD
- capturing code from various software **repositories**:
 - Git
 - SVN
- capturing additional information from various sources:
 - collaboration information databases
 - TWiki
 - SharePoint

Taking consistent snapshot of information at a certain time

Demo: LHCb DaVinci script

"Capture" pillar status

robust multi-server architecture

- high-availability: service duplication
- Puppet
- $\text{ DEV} \rightarrow \text{QA} \rightarrow \text{PROD}$

collaboration-restricted access control

- CERN SSO and e-groups
- OAuth

auto-complete from LHCb internal databases

- working group database
- publication database

asset capture

- small files over HTTP protocol
- push captured assets to EOS

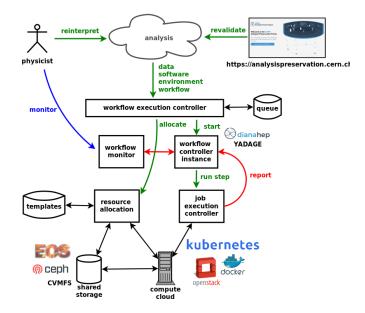
"Capture" pillar next steps

dataset capture

- working on XRootD-based large-file capture
- indicating status of background ingestion

software capture

- Git
- SVN still needed?


information capture

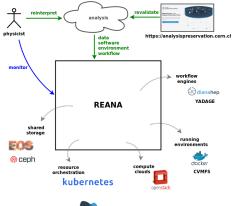
- TWiki?
- more?

develop rich CERN Analysis Preservation client

- plug into your analysis pipelines
 - \$ cap store ...
 - \$ cap share ...

3. Reusing an analysis

REANA = REusable ANA lyses


a system to instantiate preserved analysis on the cloud

O https://reanahub.io

supporting multiple scenarios

- multiple computing clouds
 → CERN OpenStack
- multiple running environments
 → Docker
- multiple resource orchestration
 - \rightarrow Kubernetes
- multiple workflow engines \rightarrow Yadage
- multiple shared storage systems \rightarrow Ceph, EOS

close collaboration with DASPOS and

recast

Demo: Reusable analysis pilot

case study: ATLAS multi-B-jet analysis

case study: LHCb Lb2LcD0K analysis

Lukas Heinrich http://github.com/diana-hep/yadage

"Reuse" pillar status

developer-oriented internal release of REANA

- run on local minikube cluster
- run on CERN Cloud infrastructure

two basic usage examples

- "hello world"
- Jupyter notebook

several HEP analysis examples

- first ATLAS examples
- first LHCb example
- see Lukas's next talk

"Reuse" pillar next steps

extending features

- better user monitoring
- easier result publishing

testing more real-life analysis examples

- ALICE post-LEGO-train analyses (ROOT macros)
- more scenarios from ATLAS, CMS, LHCb

setting up central REANA server at CERN

- used by services (CAP, COD, Zenodo, ...)
- used by physicists?

developing rich REANA client

- \$ reana-client prepare myanalysis.yaml
- \$ reana-client run myanalysis
- \$ reana-client logs myanalysis

support for more backends

- other container technologies? Singularity? Umbrella?
- other workflow engines? Snakemake? Luigi?

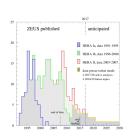
@tiborsimko

Pragmatic focus

publish or perish

- time devoted to preservation = time taken away from the next paper?
- "preservation" platform → "live" platform

cultural change


- adopt "runnable READMEs"
- encapsulate running environment
- use structured workflows

scientific benefit vs cost of preservation

 Achim Geiser's study of ZEUS publishing history and long-term preservation efforts: ~10% more papers for <1% of total cost (of which ~90% during active phase)

Achim Geiser https://indico.cern.ch/event/588219

after PhD

CERN Analysis Preservation

CERN Analysis Preservation REANA http://analysispreservation.cern.ch d http://github.com/cernanalysispreservation f http://github.com/reanahub f http://twitter.com/reanahub

CERN IT H. Hirvonsalo, D. Rodríguez, T. Šimko CERN SIS S. Dallmeier-Tiessen, R. Dasler, S. Feger, P. Fokianos, A. Lavasa, A. Mattmann, I. Tsanaktsidis, A. Trzcinska ALICE M. Gheata, C. Grigoras, M. Zimmermann ATLAS K. Cranmer, L. Heinrich, A. Sanchez Pineda, D. Rousseau, F. Socher CMS A. Calderon, A. Geiser, A. Huffman, K. Lassila-Perini, T. McCauley, A. Rao, A. Rodriguez Marrero LHCb S. Amerio, B. Couturier, S. Neubert, A. Trisovic CERN CernVM J. Blomer CERN Kubernetes R. Rocha CERN EOS L. Mascetti DASPOS M. Hildreth, H. Meng, D. Thain, A. Vyushkov DPHEP J. Shiers